login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108650
a(n) = (n+1)^2*(n+2)*(n+3)*(3*n+4)/24.
5
1, 14, 75, 260, 700, 1596, 3234, 6000, 10395, 17050, 26741, 40404, 59150, 84280, 117300, 159936, 214149, 282150, 366415, 469700, 595056, 745844, 925750, 1138800, 1389375, 1682226, 2022489, 2415700, 2867810, 3385200, 3974696, 4643584
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
LINKS
Somaya Barati, Beáta Bényi, Abbas Jafarzadeh, and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 230, no. 26).
C. Krishnamachari, The operator (xD)^n, J. Indian Math. Soc., 15 (1923),3-4. [Annotated scanned copy]
FORMULA
From Zerinvary Lajos, Jan 20 2007: (Start)
a(n) = A001477(n+1)*A001296(n+1) = (n+1)*A001296(n+1).
a(n) = (n+1)*Stirling2(n+3,n+1). (End)
From Colin Barker, Apr 22 2020: (Start)
G.f.: (1 + 8*x + 6*x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) 2*Pi^2 + 54*sqrt(3)*Pi/5 + 486*log(3)/5 - 921/5.
Sum_{n>=0} (-1)^n/a(n) = Pi^2 - 108*sqrt(3)*Pi/5 - 528*log(2)/5 + 909/5. (End)
E.g.f.: (1/24)*(24 +312*x +576*x^2 +304*x^3 +55*x^4 +3*x^5)*exp(x). - G. C. Greubel, Oct 19 2023
MAPLE
a:= n-> (n+1)^2*(n+2)*(n+3)*(3*n+4)/24: seq(a(n), n=0..36);
seq((n+1)*stirling2(n+3, n+1), n=0..32); # Zerinvary Lajos, Jan 20 2007
MATHEMATICA
Table[((n+1)^2 (n+2)(n+3)(3n+4))/24, {n, 0, 40}] (* or *) Table[n StirlingS2[n+2, n], {n, 40}] (* Harvey P. Dale, Dec 01 2013 *)
PROG
(PARI) Vec((1 + 8*x + 6*x^2) / (1 - x)^6 + O(x^30)) \\ Colin Barker, Apr 22 2020
(Magma) [(n+1)*StirlingSecond(n+3, n+1): n in [0..40]]; // G. C. Greubel, Oct 19 2023
(SageMath) [(n+1)*stirling_number2(n+3, n+1) for n in range(41)] # G. C. Greubel, Oct 19 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 13 2005
STATUS
approved