The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190568 Number of squares between powers of 2, floor(sqrt(2^(n+1))) - floor(sqrt(2^n)) 3
 1, 0, 1, 0, 2, 1, 3, 3, 5, 6, 10, 13, 19, 26, 38, 53, 75, 106, 150, 212, 300, 424, 600, 848, 1200, 1696, 2400, 3393, 4799, 6786, 9598, 13572, 19196, 27145, 38391, 54291, 76781, 108583, 153561, 217167, 307121, 434334, 614242, 868668, 1228484, 1737337, 2456967, 3474675, 4913933 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,5 COMMENTS A190568(n)/A190568(n-1) converges to sqrt(2) (A002193). - John W. Nicholson, May 15 2011 LINKS Charles R Greathouse IV, Table of n, a(n) for n = -1..6646 FORMULA a(n) = floor(sqrt(2^(n+1))) - floor(sqrt(2^n)). EXAMPLE Between 2^6=64 and 2^(6+1)=128 are the squares 81=9^2, 100=10^2, 121=11^2, so a(n)=3 MATHEMATICA Table[Floor[Sqrt[2^(n + 1)]] - Floor[Sqrt[2^n]], {n, -1, 120}] (* G. C. Greubel, Aug 19 2018 *) PROG (PARI) a(n)=sqrtint(1<<(n+1))-sqrtint(1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 22:01 EDT 2024. Contains 373532 sequences. (Running on oeis4.)