login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190567 Continued fraction expansion of 46*sqrt(46). 2
311, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622, 1, 76, 1, 622 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

G. Xiao, Contfrac.

Index entries for continued fractions for constants.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).

FORMULA

G.f.:  (311+x+76*x^2+x^3+311*x^4)/(1-x^4).

a(n) = 1+3*(1+(-1)^n)*(116+91*i^n)/2 with n>0, i=sqrt(-1) and a(0)=311.

a(n) = (-1513*(n mod 4)+575*((n+1) mod 4)+125*((n+2) mod 4)+2213*((n+3) mod 4))/12  for n>0.

a(n) = a(n-4), n>=5. - Vincenzo Librandi, Jun 14 2013

MATHEMATICA

ContinuedFraction[46 Sqrt[46], 80] (* or *) PadRight[{311}, 80, {622, 1, 76, 1}]

CoefficientList[Series[(311 + x + 76 x^2 + x^3 + 311 x^4) / (1 - x^4), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 14 2013 *)

PROG

(MAGMA)  [311] cat &cat[ [1, 76, 1, 622]: n in [1..18] ];

(PARI) a(n)=if(n, [622, 1, 76, 1][n%4+1], 311) \\ Charles R Greathouse IV, May 13, 2011

(MAGMA) I:=[311, 1, 76, 1, 622]; [n le 5 select I[n] else Self(n-4): n in [1..80]]; // Vincenzo Librandi, Jun 14 2013

CROSSREFS

Cf. A010136; A040005, A040021, A010186, A040201, A040324, A040489, A040968.

Sequence in context: A289304 A281568 A084876 * A060339 A046016 A142005

Adjacent sequences:  A190564 A190565 A190566 * A190568 A190569 A190570

KEYWORD

nonn,cofr,easy

AUTHOR

Bruno Berselli, May 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 03:15 EST 2022. Contains 350504 sequences. (Running on oeis4.)