login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190409
Decimal expansion of sum of even-numbered rows of array G defined at A190404.
3
1, 6, 1, 4, 4, 8, 1, 5, 9, 5, 6, 5, 5, 1, 8, 7, 5, 9, 9, 3, 8, 3, 6, 7, 6, 6, 8, 6, 4, 4, 1, 9, 9, 8, 5, 5, 1, 2, 6, 2, 4, 3, 0, 9, 5, 3, 3, 4, 8, 2, 5, 1, 8, 1, 3, 5, 3, 8, 2, 0, 4, 9, 9, 0, 8, 7, 6, 3, 1, 5, 6, 7, 2, 5, 7, 3, 5, 7, 4, 7, 7, 4, 6, 5, 4, 4, 1, 9, 5, 5, 0, 6, 9, 9, 7, 1, 3, 5, 3, 7, 0, 5, 4, 4
OFFSET
0,2
COMMENTS
See A190404.
LINKS
EXAMPLE
0.161448159565518759938367668644199855126243095334825...
MATHEMATICA
f[i_, j_] := i + (j + i - 2) (j + i - 1)/2; (* natural number array, A000027 *)
g[i_, j_] := (1/2)^f[i, j]; (* array G *)
r[i_] := Sum[g[i, j], {j, 1, 400}]; (* i-th row sum of G *)
c1 = N[Sum[r[2 i - 1], {i, 1, 10}], 60]
RealDigits[c1, 10, 60, -1] (* A190408 *)
c2 = N[Sum[r[2 i], {i, 1, 10}], 60]
RealDigits[c2, 10, 60, -1] (* A190409 *)
c1 + c2 (* very close to 1 *)
PROG
(Sage)
def A190409(b): # Generate the constant with b bits of precision
return N(sum([sum([(1/2)^(i+(j+i-2)*(j+i-1)/2) for j in range(1, b)]) for i in range(2, b, 2)]), b)
A190409(350) # Danny Rorabaugh, Mar 25 2015
CROSSREFS
Sequence in context: A021865 A198565 A374838 * A068226 A011237 A195433
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, May 10 2011
EXTENSIONS
a(75)-a(103) corrected by Danny Rorabaugh, Mar 24 2015
STATUS
approved