login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195433
Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)).
3
6, 1, 4, 7, 5, 7, 2, 2, 7, 2, 3, 3, 3, 9, 0, 6, 2, 1, 5, 9, 3, 3, 1, 9, 2, 4, 8, 0, 9, 1, 1, 9, 0, 0, 9, 9, 4, 7, 1, 1, 6, 2, 5, 4, 4, 6, 2, 5, 6, 9, 8, 3, 6, 3, 8, 5, 8, 2, 6, 4, 6, 7, 2, 6, 2, 1, 6, 2, 5, 6, 1, 1, 4, 6, 1, 7, 9, 6, 2, 0, 4, 1, 6, 1, 6, 8, 8, 1, 5, 6, 9, 9, 9, 1, 9, 3, 9, 5, 0, 1
OFFSET
0,1
COMMENTS
See A195304 for definitions and a general discussion.
LINKS
EXAMPLE
(A)=0.6147572272333906215933192480911...
MATHEMATICA
a = 1; b = 1; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195433 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B)=(2/3)sqrt(2); -1+A179587 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195433 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195436 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 18 2011
STATUS
approved