Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 16 2020 09:29:41
%S 1,6,1,4,4,8,1,5,9,5,6,5,5,1,8,7,5,9,9,3,8,3,6,7,6,6,8,6,4,4,1,9,9,8,
%T 5,5,1,2,6,2,4,3,0,9,5,3,3,4,8,2,5,1,8,1,3,5,3,8,2,0,4,9,9,0,8,7,6,3,
%U 1,5,6,7,2,5,7,3,5,7,4,7,7,4,6,5,4,4,1,9,5,5,0,6,9,9,7,1,3,5,3,7,0,5,4,4
%N Decimal expansion of sum of even-numbered rows of array G defined at A190404.
%C See A190404.
%H Danny Rorabaugh, <a href="/A190409/b190409.txt">Table of n, a(n) for n = 0..500</a>
%e 0.161448159565518759938367668644199855126243095334825...
%t f[i_, j_] := i + (j + i - 2) (j + i - 1)/2; (* natural number array, A000027 *)
%t g[i_,j_] := (1/2)^f[i, j]; (* array G *)
%t r[i_] := Sum[g[i, j], {j,1,400}]; (* i-th row sum of G *)
%t c1 = N[Sum[r[2 i - 1], {i, 1, 10}], 60]
%t RealDigits[c1, 10, 60, -1] (* A190408 *)
%t c2 = N[Sum[r[2 i], {i, 1, 10}], 60]
%t RealDigits[c2, 10, 60, -1] (* A190409 *)
%t c1 + c2 (* very close to 1 *)
%o (Sage)
%o def A190409(b): # Generate the constant with b bits of precision
%o return N(sum([sum([(1/2)^(i+(j+i-2)*(j+i-1)/2) for j in range(1,b)]) for i in range(2,b,2)]),b)
%o A190409(350) # _Danny Rorabaugh_, Mar 25 2015
%Y Cf. A190404, A190408.
%K nonn,cons
%O 0,2
%A _Clark Kimberling_, May 10 2011
%E a(75)-a(103) corrected by _Danny Rorabaugh_, Mar 24 2015