

A190264


Decimal expansion of (sqrt(89)  6)/2.


1



1, 7, 1, 6, 9, 9, 0, 5, 6, 6, 0, 2, 8, 3, 0, 1, 9, 0, 5, 6, 6, 0, 3, 3, 0, 1, 8, 8, 8, 1, 1, 3, 2, 0, 3, 5, 8, 4, 9, 1, 8, 1, 1, 3, 1, 6, 7, 0, 7, 5, 6, 0, 6, 6, 0, 3, 3, 1, 4, 9, 0, 7, 2, 4, 4, 9, 0, 0, 1, 1, 4, 5, 4, 7, 9, 2, 5, 5, 9, 0, 2, 9, 2, 7, 0, 5, 1, 3, 4, 9, 3, 4, 4, 5, 1, 9, 2, 0, 5, 2, 2, 6, 7, 5, 0, 6, 4, 8, 7, 1, 4, 0, 8, 7, 4, 9, 3, 7, 4, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The rectangle R whose shape (i.e., length/width) is (6 + sqrt(89))/2 can be partitioned into rectangles of shapes 3/2 and 3 in a manner that matches the periodic continued fraction [3/2, 3, 3/2, 3, ...]. R can also be partitioned into squares so as to match the periodic continued fraction [1, 1, 2, 1, 1, 6, 1, 36, 1, 6, 1, 1, 2, 1, 8, 1, 2, 1, 1, 6, 1, 36, ...]. For details, see A188635.
Quadratic number with denominator 2 and minimal polynomial 4x^2 + 24x  53.  Charles R Greathouse IV, Apr 21 2016


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000


EXAMPLE

1.716990566028301905660330188811320358491...


MATHEMATICA

FromContinuedFraction[{3/2, 3, {3/2, 3}}]
ContinuedFraction[%, 100] (* [1, 1, 2, 1, 1, 6, 1, 36, ... *)
RealDigits[N[%%, 120]] (* A190264 *)
N[%%%, 40]


PROG

(PARI) sqrt(89)/23 \\ Charles R Greathouse IV, Apr 21 2016


CROSSREFS

Cf. A188635, A190290, A178255.
Sequence in context: A145423 A019796 A309600 * A322663 A231927 A199076
Adjacent sequences: A190261 A190262 A190263 * A190265 A190266 A190267


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, May 07 2011


STATUS

approved



