The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190265 a(n) = n + [ns/r] + [nt/r]; r=1/2, s=sinh(1), t=cosh(1). 4
 6, 12, 19, 25, 31, 38, 44, 50, 57, 63, 69, 77, 83, 89, 96, 102, 108, 115, 121, 128, 134, 140, 147, 154, 160, 167, 173, 179, 186, 192, 198, 205, 211, 217, 225, 231, 237, 244, 250, 257, 263, 269, 276, 282, 288, 295, 302, 308, 315, 321, 327, 334, 340, 346, 353, 359, 365, 372, 379, 386, 392, 398, 405, 411, 417, 424, 430, 436, 443, 450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is one of three sequences that partition the positive integers.  In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked.  Define b(n) and c(n) as the ranks of n/s and n/t.  It is easy to prove that a(n)=n+[ns/r]+[nt/r], b(n)=n+[nr/s]+[nt/s], c(n)=n+[nr/t]+[ns/t], where []=floor. Taking r=1/2, s=sinh(1), t=cosh(1) gives a=A190265, b=A190279, c=A190280. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A190265:  a(n)=n+[2n*sinh(1)]+[2n*cosh(1)]. A190279:  b(n)=n+[(n/2)*csch(1)]+[n*coth(1)]. A190280:  c(n)=n+[(n/2)*sech(1)]+[n*tanh(1)]. MATHEMATICA r=1/2; s=Sinh[1]; t=Cosh[1]; a[n_] := n + Floor[n*s/r] + Floor[n*t/r]; b[n_] := n + Floor[n*r/s] + Floor[n*t/s]; c[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[a[n], {n, 1, 120}]  (*A190265*) Table[b[n], {n, 1, 120}]  (*A190279*) Table[c[n], {n, 1, 120}]  (*A190280*) CROSSREFS Cf. A190279, A190280. Sequence in context: A288794 A177708 A100357 * A135358 A187391 A081846 Adjacent sequences:  A190262 A190263 A190264 * A190266 A190267 A190268 KEYWORD nonn AUTHOR Clark Kimberling, May 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 12:39 EDT 2020. Contains 334626 sequences. (Running on oeis4.)