login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190138
Final number of terms obtained with Euler's recurrence formula when computing the sum of divisors of n.
1
1, 2, 3, 5, 9, 15, 27, 46, 80, 138, 238, 413, 713, 1235, 2136, 3695, 6393, 11057, 19130, 33091, 57246, 99032, 171315, 296365, 512682, 886902, 1534266, 2654154, 4591475, 7942870, 13740526, 23769981, 41120131, 71134474, 123056829, 212878289, 368262059, 637063333
OFFSET
1,2
COMMENTS
It appears that a(n) is the number of compositions of n whose parts are pentagonal numbers. See Neville link. - Michel Marcus, Jul 28 2017
LINKS
Leonhard Euler, Jordan Bell, A demonstration of a theorem on the order observed in the sums of divisors, arXiv:math/0507201 [math.HO], 2005-2009.
Leonhard Euler, Jordan Bell, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009.
N. Robbins, On compositions whose parts are polygonal numbers, Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 239-243. See p. 242.
EXAMPLE
For n=5, start with row 5 of A195310: [4, 3, 0]. Then replace 4 by row 4: [3, 2], replace 3 by row 3: [2, 1]. The row is now [3, 2, 2, 1, 0].
Repeat process until all terms are 0: [4, 3, 0], [3, 2, 2, 1, 0], [2, 1, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0].
The final array has 9 items, hence a(5) = 9.
MATHEMATICA
rows = 30;
gpenta[n_] := If[EvenQ[n], n(3n/2+1)/4, (n+1)(3n+1)/8];
T[n_, k_] := n - gpenta[k];
Do[row[n] = DeleteCases[Table[T[n, k], {k, n}], _?Negative], {n, rows}];
a[n_] := a[n] = row[n] //. j_?Positive :> Sequence @@ row[j] // Length;
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, rows}] (* Jean-François Alcover, Sep 22 2018 *)
PROG
(PARI)
A001318(n) = { return((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8); }
A195310(n) = {if (n == 0, return ([0])); nb = 1; vec = vector(0); nn = n; while (nn >=0, nn = n - A001318(nb); if (nn >=0, vec = concat(vec, nn)); nb++; ); return(vec); }
A190138(m) = { vval = vector(m); for (n=1, m, vec = A195310(n); svec = 0; for (k=1, length(vec), if (vec[k] == 0, svec += 1, svec += vval[vec[k]]); ); vval[n] = svec; ); for (n=1, m, print1(vval[n], ", "); ); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 19 2012
STATUS
approved