login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273905
Number of symmetric bargraphs having semiperimeter n (n>=2).
1
1, 2, 3, 5, 9, 15, 27, 46, 83, 143, 259, 450, 817, 1429, 2599, 4570, 8323, 14698, 26797, 47491, 86659, 154042, 281287, 501283, 915907, 1635835, 2990383, 5351138, 9786369, 17541671, 32092959, 57610988, 105435607, 189521640, 346950321, 624389105
OFFSET
2,2
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
FORMULA
G.f.: g(z)=(1+z)(z^4+2z^3+2z^2-1+Q)/(2z(1-z-z^2-z^3)), where Q = sqrt((1-z^2)(1-z-z^2-z^3)(1+z-z^2+z^3)).
Conjecture D-finite with recurrence (n+1)*a(n) +2*(-1)*a(n-1) +2*(-2*n+3)*a(n-2) +2*(n-6)*a(n-4) +6*(1)*a(n-5) -2*a(n-6) +(n-9)*a(n-8)=0. - R. J. Mathar, Jul 22 2022
a(n) ~ sqrt(2*r*(2-3*r)) * (25 + 18*r + 13*r^2) * (1 + r + r^2)^n / (22*sqrt(Pi*n)), where r = A192918. - Vaclav Kotesovec, Mar 08 2023
EXAMPLE
a(4) = 3; indeed, the corresponding compositions are [3],[2,2],[1,1,1].
a(6) = 9; indeed, the corresponding compositions are [5],[4,4],[1,3,1],[2,3,2],[2,1,2],[3,3,3],[2,2,2,2],[1,2,2,1],[1,1,1,1,1].
MAPLE
Q := sqrt((1-z^2)*(1-z-z^2-z^3)*(1+z-z^2+z^3)): g := (1/2)*(1+z)*(z^4+2*z^3+2*z^2-1+Q)/(z*(1-z-z^2-z^3)): gser := series(g, z = 0, 42): seq(coeff(gser, z, n), n=2..37);
# second Maple program:
a:= proc(n) option remember; `if`(n<9, [$0..3, 5, 9, 15, 27]
[n], (2*a(n-1) +(4*n-6)*a(n-2) -(2*n-12)*a(n-4)
-6*a(n-5) +2*a(n-6) -(n-9)*a(n-8))/ (n+1))
end:
seq(a(n), n=2..40); # Alois P. Heinz, Jun 24 2016
MATHEMATICA
a[2]=1; a[3]=2; a[4]=3; a[5]=5; a[6]=9; a[7]=15; a[8]=27; a[n_ /; n>8] := a[n] = ((9-n)*a[n-8] + 2*a[n-6] - 6*a[n-5] + (12-2*n)*a[n-4] + (4*n-6)*a[n-2] + 2*a[n-1])/(n+1); Table[a[n], {n, 2, 40}] (* Jean-François Alcover, Dec 02 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A065954 A067847 A190138 * A307074 A293855 A022858
KEYWORD
nonn
AUTHOR
STATUS
approved