login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of symmetric bargraphs having semiperimeter n (n>=2).
1

%I #20 Mar 08 2023 06:08:48

%S 1,2,3,5,9,15,27,46,83,143,259,450,817,1429,2599,4570,8323,14698,

%T 26797,47491,86659,154042,281287,501283,915907,1635835,2990383,

%U 5351138,9786369,17541671,32092959,57610988,105435607,189521640,346950321,624389105

%N Number of symmetric bargraphs having semiperimeter n (n>=2).

%H Alois P. Heinz, <a href="/A273905/b273905.txt">Table of n, a(n) for n = 2..2000</a>

%H M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.

%H Emeric Deutsch, S Elizalde, <a href="http://arxiv.org/abs/1609.00088">Statistics on bargraphs viewed as cornerless Motzkin paths</a>, arXiv preprint arXiv:1609.00088, 2016

%F G.f.: g(z)=(1+z)(z^4+2z^3+2z^2-1+Q)/(2z(1-z-z^2-z^3)), where Q = sqrt((1-z^2)(1-z-z^2-z^3)(1+z-z^2+z^3)).

%F Conjecture D-finite with recurrence (n+1)*a(n) +2*(-1)*a(n-1) +2*(-2*n+3)*a(n-2) +2*(n-6)*a(n-4) +6*(1)*a(n-5) -2*a(n-6) +(n-9)*a(n-8)=0. - _R. J. Mathar_, Jul 22 2022

%F a(n) ~ sqrt(2*r*(2-3*r)) * (25 + 18*r + 13*r^2) * (1 + r + r^2)^n / (22*sqrt(Pi*n)), where r = A192918. - _Vaclav Kotesovec_, Mar 08 2023

%e a(4) = 3; indeed, the corresponding compositions are [3],[2,2],[1,1,1].

%e a(6) = 9; indeed, the corresponding compositions are [5],[4,4],[1,3,1],[2,3,2],[2,1,2],[3,3,3],[2,2,2,2],[1,2,2,1],[1,1,1,1,1].

%p Q := sqrt((1-z^2)*(1-z-z^2-z^3)*(1+z-z^2+z^3)): g := (1/2)*(1+z)*(z^4+2*z^3+2*z^2-1+Q)/(z*(1-z-z^2-z^3)): gser := series(g, z = 0, 42): seq(coeff(gser,z,n), n=2..37);

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n<9, [$0..3, 5, 9, 15, 27]

%p [n], (2*a(n-1) +(4*n-6)*a(n-2) -(2*n-12)*a(n-4)

%p -6*a(n-5) +2*a(n-6) -(n-9)*a(n-8))/ (n+1))

%p end:

%p seq(a(n), n=2..40); # _Alois P. Heinz_, Jun 24 2016

%t a[2]=1; a[3]=2; a[4]=3; a[5]=5; a[6]=9; a[7]=15; a[8]=27; a[n_ /; n>8] := a[n] = ((9-n)*a[n-8] + 2*a[n-6] - 6*a[n-5] + (12-2*n)*a[n-4] + (4*n-6)*a[n-2] + 2*a[n-1])/(n+1); Table[a[n], {n, 2, 40}] (* _Jean-François Alcover_, Dec 02 2016, after _Alois P. Heinz_ *)

%K nonn

%O 2,2

%A _Emeric Deutsch_ and _Sergi Elizalde_, Jun 23 2016