login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189187
Riordan matrix (1/(1-x-x^2-x^3),(x+x^2)/(1-x-x^2-x^3)).
0
1, 1, 1, 2, 3, 1, 4, 7, 5, 1, 7, 17, 16, 7, 1, 13, 38, 46, 29, 9, 1, 24, 82, 122, 99, 46, 11, 1, 44, 174, 304, 303, 184, 67, 13, 1, 81, 362, 728, 857, 641, 309, 92, 15, 1, 149, 743, 1690, 2291, 2031, 1212, 482, 121, 17, 1, 274, 1509, 3827, 5869, 6004, 4260, 2108, 711, 154, 19, 1
OFFSET
0,4
COMMENTS
Row sums are A077936, diagonal sums are A077946
FORMULA
T(n,k) = [x^n](x+x^2)^k/(1-x-x^2-x^3)^(k+1).
T(n,k) = sum(binomial(i+k,k)*sum(binomial(i+k,j)*binomial(n-i-j,i+k),j=0..n-k-2*i),i=0..n).
T(n,k) = sum(binomial(k,i)*(-1)^(k-i)*sum(binomial(j+k,k)*trinomial(i+j,n-3*k+2*i-j),j=0..n-k),i=0..k)
Recurrence: T(n+3,k+1) = T(n+2,k+1) + T(n+2,k) + T(n+1,k+1) + T(n+1,k) + T(n,k+1)
EXAMPLE
Triangle begins:
1
1,1
2,3,1
4,7,5,1
7,17,16,7,1
13,38,46,29,9,1
24,82,122,99,46,11,1
44,174,304,303,184,67,13,1
81,362,728,857,641,309,92,15,1
MATHEMATICA
Flatten[Table[Sum[Binomial[i+k, k]Sum[Binomial[i+k, j]Binomial[n-i-j, i+k], {j, 0, n-k-2i}], {i, 0, n}], {n, 0, 20}, {k, 0, n}]]
PROG
(Maxima) create_list(sum(binomial(i+k, k)*sum(binomial(i+k, j)*binomial(n-i-j, i+k), j, 0, n-k-2*i), i, 0, n), n, 0, 8, k, 0, n);
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, Apr 18 2011
EXTENSIONS
a(23) and a(40) corrected by Georg Fischer, Feb 20 2021 and Apr 29 2022
STATUS
approved