OFFSET
1,2
COMMENTS
Row n contains 2*n+1 - phi(2*n+1) = A053193(n) terms. Row n has just one term (namely n) if 2*n+1 is prime.
If we extend each row [r,s, ..., z] to infinite length by appending [j*N*r,j*N*s, ..., j*N*z] for j>=1 and N=2*n+1 we obtain a relation on pairs of positive numbers (u,v). Write R(u,v) if v appears in row u (the relation is 1 on the pair (u,v)). Then R(u,u), R(u,v) ==> R(v, u), R(u,v) ==> R(u, v mod (2*u+1) ), and R(u,v) and v > u ==> R(u-(v-u), v-(v-u)) = R(2*u - v, u).
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11968 (rows 1..250 of the triangle, flattened)
FORMULA
T(n,k) = A300288(n,k) - n.
EXAMPLE
Triangle starts:
[01]: [1]
[02]: [2]
[03]: [3]
[04]: [1, 4, 7]
[05]: [5]
[06]: [6]
[07]: [1, 2, 4, 7, 10, 12, 13]
[08]: [8]
[09]: [9]
[10]: [1, 3, 4, 7, 10, 13, 16, 17, 19]
[11]: [11]
[12]: [2, 7, 12, 17, 22]
[13]: [1, 4, 7, 10, 13, 16, 19, 22, 25]
[14]: [14]
[15]: [15]
[16]: [1, 4, 5, 7, 10, 13, 16, 19, 22, 25, 27, 28, 31]
[17]: [2, 3, 7, 10, 12, 17, 22, 24, 27, 31, 32]
[18]: [18]
...
MAPLE
T:= n-> select(k-> igcd(n-k, 2*n+1)<>1, [$1..2*n+1])[]:
seq(T(n), n=1..25); # Alois P. Heinz, Mar 09 2018
MATHEMATICA
A299714row[n_]:=With[{q=2n+1}, If[PrimeQ[q], {n}, Select[Range[q], GCD[n-#, q]!=1&]]]; Array[A299714row, 20] (* Paolo Xausa, Nov 10 2023 *)
PROG
(PARI) is(n, k)= ( gcd(n-k, 2*n+1)!=1 );
for (n=1, 33, for (k=1, 2*n+1, if ( is(n, k), print1(k, ", ") ); ); );
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Joerg Arndt, Feb 17 2018
STATUS
approved