login
A189135
Zero-one sequence based on the central polygonal numbers n^2-n+1: a(A002061(k))=a(k); a(A135668(k))=1-a(k), a(1)=0.
3
0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0
OFFSET
1
MATHEMATICA
u[n_] := n^2-n+1; (*A002061*)
a[1] = 0; h = 128;
c = (u[#1] &) /@ Range[2h];
d = (Complement[Range[Max[#1]], #1] &)[c]; (*A135668*)
Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; (*A189135*)
Table[a[c[[n]]] = a[n], {n, 1, h}] (*A189135*)
Flatten[Position[%, 0]] (*A189136*)
Flatten[Position[%%, 1]] (*A189137*)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 17 2011
STATUS
approved