The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189011 Zero-one sequence based on triangular numbers:  a(A000217(k))=a(k); a(A014132(k))=1-a(k); a(1)=0. 4
 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 LINKS EXAMPLE Let u=A000217 and v=A014132, so that u(n)=n(n+1)/2 and v=complement(u) for n>=1.  Then a is a self-generating zero-one sequence with initial value a(1)=0 and a(u(k))=a(k); a(v(k))=1-a(k). MATHEMATICA u[n_] := n(n+1)/2;  (*A000217*) a[1] = 0; h = 128; c = (u[#1] &) /@ Range[h]; d = (Complement[Range[Max[#1]], #1] &)[c]; (*A014132*) Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; Table[a[c[[n]]] = a[n], {n, 1, h}]   (*A189011*) Flatten[Position[%, 0]]  (*A189012*) Flatten[Position[%%, 1]] (*A189013*) CROSSREFS Cf. A188967, A189012, A189013, A188973. Sequence in context: A234046 A285565 A188076 * A189135 A219189 A029691 Adjacent sequences:  A189008 A189009 A189010 * A189012 A189013 A189014 KEYWORD nonn AUTHOR Clark Kimberling, Apr 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 23:49 EDT 2020. Contains 334747 sequences. (Running on oeis4.)