The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189078 Zero-one sequence based on the sequence floor(n*sqrt(2)): a(A001951(k))=a(k); a(A001952(k))=1-a(k); a(1)=0, a(2)=0. 6
 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE Let u=A001951=(Beatty sequence for sqrt(2)) and v=A001952=(Beatty sequence for 2+sqrt(2)). Then A189078 is the sequence a given by a(u(k))=a(k); a(v(k))=1-a(k), where a(0)=0 and a(1)=0. MATHEMATICA r = 2^(1/2); u[n_] := Floor[r*n]; (*A001951*) v[n_] := Floor[(2 + r) n]; (*A001952*) a[1] = 0; a[2] = 0; h = 200; c = Table[u[n], {n, 1, h}]; d = Table[v[n], {n, 1, h}]; Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; (*A189078*) Table[a[c[[n]]] = a[n], {n, 1, h}] (*A189078*) Flatten[Position[%, 0]] (*A189079*) Flatten[Position[%%, 1]] (*A189080*) CROSSREFS Cf. A188967, A189079, A189080, A189081. Sequence in context: A288226 A104121 A179770 * A257834 A173950 A157928 Adjacent sequences: A189075 A189076 A189077 * A189079 A189080 A189081 KEYWORD nonn AUTHOR Clark Kimberling, Apr 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 09:22 EDT 2023. Contains 365654 sequences. (Running on oeis4.)