login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188764
Primes p such that all prime factors of p-2 have exponent 3.
0
3, 29, 127, 24391, 274627, 328511, 357913, 571789, 1157627, 1442899, 1860869, 2146691, 2924209, 5177719, 9129331, 9938377, 10503461, 12326393, 15438251, 18191449, 24642173, 26730901, 28372627, 30080233, 39651823
OFFSET
1,1
COMMENTS
A048636 is the subsequence of terms where there is only one prime divisor of p-2. - M. F. Hasler, Jan 13 2025
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) >> n^3. - Charles R Greathouse IV, Jan 14 2025
EXAMPLE
30080233-2=311^3, 39651823-2=11^3*31^3,...
3-2 = 1 has no prime factors, so is trivially a member.
MATHEMATICA
Select[Table[Prime[n], {n, 3000000}], Length[Union[Last/@FactorInteger[#-2]]]==1&&Union[Last/@FactorInteger[#-2]]=={3}&]
Select[Prime[Range[25*10^5]], Union[FactorInteger[#-2][[All, 2]]]=={3}&] (* Harvey P. Dale, Nov 22 2018 *)
PROG
(PARI) list(lim)=my(v=List()); forsquarefree(k=1, sqrtnint(lim\1-2, 3), my(p=k[1]^3+2); if(isprime(p), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025
CROSSREFS
Subsequence of A144953; A048636 is a subsequence.
Sequence in context: A094068 A084105 A024386 * A171355 A163854 A227046
KEYWORD
nonn,changed
AUTHOR
STATUS
approved