login
A188289
Binomial sum related to rooted trees.
1
0, 2, 3, 14, 45, 167, 609, 2270, 8517, 32207, 122463, 467843, 1794195, 6903353, 26635773, 103020254, 399300165, 1550554583, 6031074183, 23493410759, 91638191235, 357874310213, 1399137067683, 5475504511859, 21447950506395, 84083979575117
OFFSET
0,2
LINKS
FORMULA
a(n) = binomial(2*n,n) - (-1)^n - Sum_{k=0..n-1} binomial(2*k, n-1).
a(n) = Sum_{k=1..n} binomial(n+k,k)*(Sum_{r=n-k..n} (-1)^r*binomial(n-k, r)).
a(n) = (-1)^n*2^(-(1+n))*(1 - 2^(1+n) + (-2)^n*binomial(2+2*n, 1+n) * hypergeometric2F1(1, 2+2*n; 2+n; -1)).
MATHEMATICA
Table[Binomial[2n, n]-(-1)^n-Sum[Binomial[2k, n-1], {k, 0, n-1}], {n, 0, 30}] (* Harvey P. Dale, Dec 10 2012 *)
PROG
(PARI) {a(n) = binomial(2*n, n) -(-1)^n -sum(k=0, n-1, binomial(2*k, n-1))}; \\ G. C. Greubel, Apr 29 2019
(Magma) [n eq 0 select 0 else Binomial(2*n, n) -(-1)^n - (&+[Binomial(2*k, n-1): k in [0..n-1]]): n in [0..30]]; // G. C. Greubel, Apr 29 2019
(Sage) [binomial(2*n, n) -(-1)^n -sum(binomial(2*k, n-1) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Apr 29 2019
(GAP) List([0..30], n-> Binomial(2*n, n) -(-1)^n -Sum([0..n-1], k-> Binomial(2*k, n-1))); # G. C. Greubel, Apr 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Olivier Gérard, Aug 19 2012
STATUS
approved