login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070207
Expansion of (1-x-5*x^2)/(1-3*x-2*x^2-x^3).
1
1, 2, 3, 14, 50, 181, 657, 2383, 8644, 31355, 113736, 412562, 1496513, 5428399, 19690785, 71425666, 259086967, 939803018, 3409008654, 12365718965, 44854977221, 162705378247, 590191808148, 2140841158159, 7765612469020, 28168711531526, 102178200690777
OFFSET
0,2
COMMENTS
The old entry with this sequence number was a duplicate of A024155.
REFERENCES
Benoit Rittaud, Elise Janvresse, Emmanuel Lesigne and Jean-Christophe Novelli, Quand les maths se font discrètes, Le Pommier, 2008 (ISBN 978-2-7465-0370-0). See pp. 42ff.
FORMULA
a(0)=1, a(1)=2, a(2)=3, a(n) = 3*a(n-1)+2*a(n-2)+a(n-3). - Harvey P. Dale, Feb 01 2013
MAPLE
f:= gfun:-rectoproc({-a(n+3)+3*a(n+2)+2*a(n+1)+a(n), a(0) = 1, a(1) = 2, a(2) = 3}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Dec 28 2015
MATHEMATICA
CoefficientList[Series[(1-x-5x^2)/(1-3x-2x^2-x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{3, 2, 1}, {1, 2, 3}, 40] (* Harvey P. Dale, Feb 01 2013 *)
PROG
(PARI) Vec((1-x-5*x^2)/(1-3*x-2*x^2-x^3) + O(x^100)) \\ Altug Alkan, Dec 27 2015
(Magma) I:=[1, 2, 3]; [n le 3 select I[n] else 3*Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 28 2015
CROSSREFS
Sequence in context: A294495 A188289 A153741 * A268559 A346057 A371608
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 18 2008
STATUS
approved