login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188044 a(n) = [n*r] - [k*r] - [n*r-k*r], where r=sqrt(2), k=4, [ ]=floor. 3
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1
COMMENTS
See A188014.
LINKS
FORMULA
a(n) = [n*r] - [4*r] - [n*r-4*r], r=sqrt(2).
MATHEMATICA
r=2^(1/2); k=4;
t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}] (* A188044 *)
Flatten[Position[t, 0]] (* A188045 *)
Flatten[Position[t, 1]] (* A188046 *)
PROG
(PARI) for(n=1, 100, print1(floor(n*sqrt(2)) - floor(4*sqrt(2)) - floor((n-4)*sqrt(2)), ", ")) \\ G. C. Greubel, Apr 13 2018 *)
(Magma) [Floor(n*Sqrt(2)) - Floor(4*Sqrt(2)) - Floor((n-4)*Sqrt(2)): n in [1..100]]; // G. C. Greubel, Apr 13 2018
CROSSREFS
Sequence in context: A244220 A283963 A131670 * A287523 A288932 A155482
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 19 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 13:16 EST 2024. Contains 370433 sequences. (Running on oeis4.)