login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187832
Decimal expansion of integral from 1/2 to 1 of (1-x)/x dx.
6
1, 9, 3, 1, 4, 7, 1, 8, 0, 5, 5, 9, 9, 4, 5, 3, 0, 9, 4, 1, 7, 2, 3, 2, 1, 2, 1, 4, 5, 8, 1, 7, 6, 5, 6, 8, 0, 7, 5, 5, 0, 0, 1, 3, 4, 3, 6, 0, 2, 5, 5, 2, 5, 4, 1, 2, 0, 6, 8, 0, 0, 0, 9, 4, 9, 3, 3, 9, 3, 6, 2, 1, 9, 6, 9, 6, 9, 4, 7, 1, 5, 6, 0, 5, 8, 6, 3, 3, 2, 6, 9, 9, 6, 4, 1, 8, 6, 8, 7, 5, 4, 2, 0, 0, 1
OFFSET
0,2
COMMENTS
Replacing 1/2 with any other number 0 < t < 1, the value of the integral is t - 1 - log(t).
REFERENCES
J.-M. Monier, Cours, Analyse, Tome 4, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 4.3.14 pages 53 and 367.
FORMULA
Equals log(2) - 1/2 = A002162 - 1/2.
Equals Sum_{k>=1} 1/((2k-1)*(2k)*(2k+1)). - Bruno Berselli, Mar 16 2014
From Amiram Eldar, Jul 28 2020: (Start)
Equals Sum_{k>=0} (-1)^k/(k+3).
Equals Sum_{k>=2} 1/(k * 2^k).
Equals Sum_{k>=2} 1/(4*k^2 - 2*k).
Equals Sum_{k>=2} (zeta(k) - 1)/2^k.
Equals Sum_{k>=1} zeta(2*k + 1)/2^(2*k + 1). (End)
From Bernard Schott, Nov 22 2021: (Start)
Equals Sum_{k>=1} (S(k) - log(2)) when S(k) = Sum_{m=1..k} (-1)^(m+1) / m.
Equals Integral_{x=0..1} x/(1+x)^2 dx. (End)
Equals Sum_{k,m>=1} (-1)^(k+m)/(k+m). - Amiram Eldar, Jun 09 2022
Equals Integral_{x = 0..1} Integral_{y = 0..1} x*y/(x + y)^2 dy dx. - Peter Bala, Dec 12 2022
EXAMPLE
0.193147180559945309417232121458176568075500134360255254120680009493393621969...
MAPLE
(evalf(log(2) - 1/2), 111); # Bernard Schott, Nov 25 2021
MATHEMATICA
RealDigits[Log[2] - 1/2, 10, 111][[1]]
PROG
(PARI) log(2)-1/2 \\ Charles R Greathouse IV, Dec 27 2012
CROSSREFS
Apart from the first digit the same as A002162.
Cf. A239354: Sum_{k>=1} 1/((2k)*(2k+1)*(2k+2)).
Sequence in context: A154629 A333182 A154489 * A085579 A081813 A197003
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Dec 27 2012
STATUS
approved