The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A187734 a(n) is the number of n-walks between the vertices 1 and 3 of the Graph on the chalkboard in 'Good Will Hunting', (1997). 0
 0, 2, 2, 14, 18, 94, 146, 638, 1138, 4382, 8658, 30398, 64818, 212574, 479890, 1496062, 3525106, 10581918, 25748306, 75139390, 187301554, 535144670, 1358396434, 3820058238, 9829858162, 27316621854, 71015537874, 195595836350, 512422576178, 1401935442782 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For a presentation of the Graph, see the first link. REFERENCES Burkard Polster & Marty Ross, Math Goes to the Movies, The Johns Hopkins University Press, Baltimore, 2013, §1.7 Mathematics: Graph Theory 1, pp. 9-12. LINKS Oliver Knill, Harvard Math, The Good Will Hunting Problem Wikipedia, Good Will Hunting MMDB-The Mathematical Movie Database, Burkard Polster & Marty Ross, Good Will Hunting Index entries for linear recurrences with constant coefficients, signature (1,6,-4). FORMULA G.f.: (2*x^2 + 2*x^3)/(1 - 7*x^2 - 2*x^3 + 4*x^4). EXAMPLE "For example, between the vertices 1 and 3, we can calculate that there are no 1-walks, two 2-walks, two 3-walks and so on. The resulting sequence of numbers begins 0, 2, 2, 14, 18, 94, 146, 638, ..." (p. 11). MATHEMATICA LinearRecurrence[{1, 6, -4}, {0, 2, 2}, 30] (* Or *) Rest@ CoefficientList[ Series[ 2x^2/(1 - x - 6x^2 + 4x^3), {x, 0, 28}], x] PROG (PARI) Vec((2*x^2 + 2*x^3)/(1 - 7*x^2 - 2*x^3 + 4*x^4)+O(x^99)) \\ Charles R Greathouse IV, May 21 2013 CROSSREFS Sequence in context: A032209 A032134 A032038 * A151353 A151437 A235349 Adjacent sequences: A187731 A187732 A187733 * A187735 A187736 A187737 KEYWORD nonn,easy,walk AUTHOR Oliver Knill (knill(AT)math.harvard.edu), Burkard Polster (burkard.polster(AT)monash.edu), Marty Ross (martinirossi(AT)gmail.com), and Robert G. Wilson v, Jan 02 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 02:41 EST 2023. Contains 359836 sequences. (Running on oeis4.)