login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151353 Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, -1), (1, 1)} 0
1, 0, 1, 2, 2, 14, 21, 76, 252, 566, 2282, 6248, 19958, 69356, 205129, 720868, 2340178, 7692570, 26681224, 87814024, 302838250, 1035805496, 3526054994, 12286338876, 42255768876, 147090631152, 513835481206, 1790785075144, 6298459417432, 22120204885156, 77965202090697, 275780508039312, 975587671958542 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..32.

A. Bostan, K. Raschel, B. Salvy, Non-D-finite excursions in the quarter plane, J. Comb. Theory A 121 (2014) 45-63, Table 1 Tag 5, Tag 16.

M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.

Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.

MATHEMATICA

aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, n], {n, 0, 25}]

CROSSREFS

Sequence in context: A032134 A032038 A187734 * A151437 A235349 A226157

Adjacent sequences:  A151350 A151351 A151352 * A151354 A151355 A151356

KEYWORD

nonn,walk

AUTHOR

Manuel Kauers, Nov 18 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 06:51 EDT 2018. Contains 315273 sequences. (Running on oeis4.)