login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187710
a(n) = n^2 + n + 10.
3
10, 12, 16, 22, 30, 40, 52, 66, 82, 100, 120, 142, 166, 192, 220, 250, 282, 316, 352, 390, 430, 472, 516, 562, 610, 660, 712, 766, 822, 880, 940, 1002, 1066, 1132, 1200, 1270, 1342, 1416, 1492, 1570, 1650, 1732, 1816, 1902, 1990, 2080, 2172, 2266, 2362, 2460
OFFSET
0,1
FORMULA
a(0)=10, a(1)=12, a(2)=16; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2014
From Bruno Berselli, Oct 20 2016: (Start)
G.f.: 2*(5 - 9*x + 5*x^2)/(1 - x)^3.
a(n) = 2*A167499(n-1) for n>0.
a(n) = Sum_{i=n-5..n+5} i*(i+1)/11. (End)
E.g.f.: (x^2 + 2*x + 10)*exp(x). - G. C. Greubel, Nov 06 2018
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(39)/2)/sqrt(39). - Amiram Eldar, Jan 17 2021
MATHEMATICA
f[n_] := n^2 + n + 10; f[Range[0, 100]]
LinearRecurrence[{3, -3, 1}, {10, 12, 16}, 50] (* Harvey P. Dale, Jan 18 2014 *)
PROG
(PARI) a(n)=n^2+n+10 \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [n^2 + n + 10: n in [0..50]]; // G. C. Greubel, Nov 06 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset changed to 0 from Bruno Berselli, Oct 20 2016
STATUS
approved