login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167499
a(n) = n*(n+3)/2 + 6.
9
6, 8, 11, 15, 20, 26, 33, 41, 50, 60, 71, 83, 96, 110, 125, 141, 158, 176, 195, 215, 236, 258, 281, 305, 330, 356, 383, 411, 440, 470, 501, 533, 566, 600, 635, 671, 708, 746, 785, 825, 866, 908, 951, 995, 1040, 1086, 1133, 1181, 1230, 1280, 1331, 1383, 1436, 1490
OFFSET
0,1
COMMENTS
Numbers m > 5 such that 8*m - 39 is a square. - Bruce J. Nicholson, Jul 25 2017
LINKS
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, Journal of Integer Sequences, Vol. 22 (2019), Article 19.8.4.
FORMULA
a(n) = n + a(n-1) + 1, with n > 1, a(1) = 8.
From Vincenzo Librandi, Sep 16 2013: (Start)
G.f.: (6 - 10*x + 5*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
Sum_{n>=0} 1/a(n) = 2*Pi*tanh(Pi*sqrt(39)/2)/sqrt(39) - 1/5. - Amiram Eldar, Jan 17 2021
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(6 + 2*x + x^2/2).
a(n) = A187710(n+1)/2. (End)
MAPLE
A167499:=n->n*(n+3)/2+6: seq(A167499(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2017
MATHEMATICA
Table[n*(n + 3)/2 + 6, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 03 2011 *)
CoefficientList[Series[(6 - 10 x + 5 x^2) / (1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Sep 16 2013 *)
LinearRecurrence[{3, -3, 1}, {6, 8, 11}, 60] (* Harvey P. Dale, Jun 21 2022 *)
PROG
(Magma) [n*(n+3)/2+6: n in [0..60]]; // Vincenzo Librandi, Sep 16 2013
(PARI) a(n)=n*(n+3)/2+6 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A187710.
Sequence in context: A315855 A287408 A287398 * A020716 A020937 A183208
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 07 2009
STATUS
approved