OFFSET
0,1
COMMENTS
Numbers m > 5 such that 8*m - 39 is a square. - Bruce J. Nicholson, Jul 25 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, Journal of Integer Sequences, Vol. 22 (2019), Article 19.8.4.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = n + a(n-1) + 1, with n > 1, a(1) = 8.
From Vincenzo Librandi, Sep 16 2013: (Start)
G.f.: (6 - 10*x + 5*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
Sum_{n>=0} 1/a(n) = 2*Pi*tanh(Pi*sqrt(39)/2)/sqrt(39) - 1/5. - Amiram Eldar, Jan 17 2021
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(6 + 2*x + x^2/2).
a(n) = A187710(n+1)/2. (End)
MAPLE
MATHEMATICA
Table[n*(n + 3)/2 + 6, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 03 2011 *)
CoefficientList[Series[(6 - 10 x + 5 x^2) / (1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Sep 16 2013 *)
LinearRecurrence[{3, -3, 1}, {6, 8, 11}, 60] (* Harvey P. Dale, Jun 21 2022 *)
PROG
(Magma) [n*(n+3)/2+6: n in [0..60]]; // Vincenzo Librandi, Sep 16 2013
(PARI) a(n)=n*(n+3)/2+6 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 07 2009
STATUS
approved