login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187060
Primes p such that the polynomial x^2 + x + p generates only primes for x = 1..7.
15
11, 17, 41, 21557, 26681, 128981, 844427, 2073347, 3992201, 4889237, 6184637, 11900501, 21456047, 24598361, 33771581, 34864211, 50943791, 51448361, 51867197, 55793951, 56421347, 61218251, 67787537, 69726647, 76345121
OFFSET
1,1
COMMENTS
From Weber, p. 15. However, erroneous.
All terms = {11,17} mod 30. - Zak Seidov, May 08 2011
LINKS
Zak Seidov and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (Zak Seidov found the first 400 terms)
H. J. Weber, Regularities of Twin, Triplet and Multiplet Prime Numbers, arXiv:1103.0447 [math.NT], 2011-2012.
EXAMPLE
a(4) <> 21577 because 0^2 + 0 + 21577 = 21577; 1^2 + 1 + 21577 = 21579 = 3 * 7193 thus exposing an error in Weber's paper; 2^2 + 2 + 21577 = 21583 = 113 * 191; 3^2 + 3 + 21577 = 21589 is prime; 4^2 + 4 + 21577 = 21597 = 3 * 23 * 313; 5^2 + 5 + 21577 = 21607 = 17 * 31 * 41 (a "3-brilliant number" rather than a prime); 6^2 + 6 + 21577 = 21619 = 13 * 1663; 7^2 + 7 + 21577 = 21633 = 3 * 7211.
MATHEMATICA
okQ[n_] := And @@ PrimeQ[Table[i^2 + i + n, {i, 0, 7}]]; Select[Range[10000], okQ] (* T. D. Noe, Mar 03 2011 *)
PROG
(PARI) for(k=1, 50000, p=prime(k); if(isprime(p+2) && isprime(p+6) && isprime(p+12) && isprime(p+20) && isprime(p+30) && isprime(p+42) && isprime(p+56), print(p), )) \\ Nathaniel Johnston, Apr 26 2011
(PARI) p=2; q=3; forprime(r=5, 1e6, if(r-p==6 && q-p==2 && isprime(p+12) && isprime(p+20) && isprime(p+30) && isprime(p+42) && isprime(p+56), print(p)); p=q; q=r) \\ Charles R Greathouse IV, Mar 04 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Mar 03 2011
EXTENSIONS
a(12)-a(25) from Nathaniel Johnston, Apr 26 2011
STATUS
approved