login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187057
Primes p such that the polynomial x^2 + x + p generates only primes for x = 0, ..., 4.
13
11, 17, 41, 347, 641, 1277, 1427, 1607, 2687, 3527, 4001, 4637, 4931, 13901, 19421, 21011, 21557, 22271, 23741, 26681, 26711, 27941, 28277, 31247, 32057, 33617, 43781, 45821, 55331, 55661, 55817, 68207, 68897, 71327, 91571, 97367, 113147, 128657, 128981
OFFSET
1,1
COMMENTS
From Weber, p. 15.
LINKS
EXAMPLE
a(1) = 11 because x^2 + x + 11 generates 0^2 + 0 + 11; 1^2 + 1 + 11 = 13; 2^2 + 2 + 11 = 17; 3^2 + 3 + 11 = 23; 4^2 + 4 + 11 = 31, all primes.
MATHEMATICA
okQ[n_] := And @@ PrimeQ[Table[i^2 + i + n, {i, 0, 4}]]; Select[Range[10000], okQ] (* T. D. Noe, Mar 03 2011 *)
Select[Prime[Range[12500]], AllTrue[#+{2, 6, 12, 20}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 11 2019 *)
PROG
(PARI) forprime(p=2, 1e4, if(isprime(p+2)&&isprime(p+6)&&isprime(p+12) &&isprime(p+20), print1(p", "))) \\ Charles R Greathouse IV, Mar 04 2012
CROSSREFS
Sequence in context: A178070 A243222 A090609 * A187058 A144051 A331940
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Mar 03 2011
STATUS
approved