login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144051 Primes p such that the polynomial x^2 + x + p generates only primes for x = 1..6. 12
11, 17, 41, 1277, 21557, 26681, 28277, 113147, 128981, 421697, 665111, 844427, 1164587, 1615631, 2073347, 2798921, 2846771, 3053747, 3992201, 4889237, 5071667, 5093507, 5344247, 5706641, 6184637, 6383051, 8396777 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms = {11,17} mod 30. - Zak Seidov, May 08 2011

LINKS

Zak Seidov, Table of n, a(n) for n = 1..1000

H. J. Weber, Regularities of Twin, Triplet and Multiplet Prime Numbers, arXiv:1103.0447 [math.NT], 2011-2012.

EXAMPLE

a(3) = 41 because 0^2 + 0 + 41 = 41; 1^2 + 1 + 41 = 43; 2^2 + 2 + 41 = 47; 3^2 + 3 + 41 = 53; 4^2 + 4 + 41 = 61; 5^2 + 5 + 41 = 71; 6^2 + 6 + 41 = 83, all primes.

MATHEMATICA

lst={}; Do[p1=Prime[n]; If[PrimeQ[p2=p1+2] && PrimeQ[p3=p1+6] && PrimeQ[p4=p1+12] && PrimeQ[p5=p1+20] && PrimeQ[p6=p1+30] && PrimeQ[p7=p1+42], AppendTo[lst, p1]], {n, 10^5}]; lst

okQ[n_] := And @@ PrimeQ[Table[i^2 + i + n, {i, 0, 6}]]; Select[Range[10000], okQ] (* T. D. Noe, Mar 03 2011 *)

CROSSREFS

Cf. A187057, A187058.

Sequence in context: A090609 A187057 A187058 * A331940 A187060 A190800

Adjacent sequences: A144048 A144049 A144050 * A144052 A144053 A144054

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Sep 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 14:22 EST 2022. Contains 358362 sequences. (Running on oeis4.)