|
|
A187023
|
|
a(n) is the smallest prime factor of n^n-1 having the form k*n+1.
|
|
5
|
|
|
3, 13, 5, 11, 7, 29, 17, 19, 11, 15797, 13, 53, 7027567, 61, 17, 10949, 19, 109912203092239643840221, 41, 43, 23, 461, 73, 101, 937, 109, 29, 59, 31, 568972471024107865287021434301977158534824481, 257, 67, 103, 281, 37, 149, 191, 157, 41
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
7^7-1 = 2*3*29*4733; the smallest prime divisor of the form k*n+1 is 29 = 4*7+1, hence a(7) = 29.
|
|
MATHEMATICA
|
Table[p=First/@FactorInteger[n^n-1]; Select[p, Mod[#1, n] == 1 &, 1][[1]], {n, 2, 40}]
|
|
PROG
|
(Magma) A187023:=function(n); for d in PrimeDivisors(n^n-1) do if d mod n eq 1 then return d; end if; end for; return 0; end function; [ A187023(n): n in [2..50] ]; // Klaus Brockhaus, Mar 02 2011
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|