|
|
A187025
|
|
a(n) is the least number k such that k*n+1 is a prime dividing n^n-1.
|
|
2
|
|
|
1, 4, 1, 2, 1, 4, 2, 2, 1, 1436, 1, 4, 501969, 4, 1, 644, 1, 5784852794328402307380, 2, 2, 1, 20, 3, 4, 36, 4, 1, 2, 1, 18353950678197027912484562396837972855962080, 8, 2, 3, 8, 1, 4, 5, 4, 1, 2, 1, 4, 2, 4, 1, 36, 2, 4, 3, 128, 1, 2, 5, 85840, 2, 4, 1, 12, 1, 16, 273
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
The smallest prime factor of n^n-1 of the form k*n+1 is A187023(n).
|
|
LINKS
|
|
|
EXAMPLE
|
7^7-1 = 2*3*29*4733; the smallest prime divisor of the form k*n+1 is 29 = 4*7+1, hence a(7) = 4.
|
|
MATHEMATICA
|
Table[p=First/@FactorInteger[n^n-1]; (Select[p, Mod[#1, n] == 1 &, 1][[1]] - 1)/n, {n, 2, 40}]
|
|
PROG
|
(Magma) A187025:=function(n); for d in PrimeDivisors(n^n-1) do if d mod n eq 1 then return (d-1)/n; end if; end for; return 0; end function; [ A187025(n): n in [2..50] ]; // Klaus Brockhaus, Mar 02 2011
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|