login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331807
a(n) is the smallest prime number p > n, not yet in the sequence, such that p is a palindrome when written in base n.
1
3, 13, 5, 31, 7, 71, 73, 109, 11, 199, 157, 313, 197, 241, 17, 307, 19, 419, 401, 463, 23, 599, 577, 701, 677, 757, 29, 929, 991, 1117, 1153, 1123, 1259, 1471, 37, 1481, 1483, 1873, 41, 1723, 43, 1979, 2069, 2161, 47, 2351, 2593, 2549, 2551, 2857, 53, 2969, 2917, 3191, 3137
OFFSET
2,1
COMMENTS
Using a representation where the digits of the prime are written between "[" and "]_" separated by commas with the base following the "_" then by checking up to a base of 7000 (where the lowest prime palindrome is [1, 1]_7000):
1) Either the palindrome is [1, 1]_n where n is one less than a prime number, or [1, X, 1]_n where X << n, asymptotically.
2) A conjecture: No lowest primes need more than three digits.
3) The terms a(12) and a(30) differ from the similar sequence A331806 as these terms in A331806 are the same as the earlier terms a(3) and a(5).
EXAMPLE
a(2)=3 which is 11 in binary, a(3)=13 which is 111 in ternary, a(4)=5 which is 11 in quaternary, a(16)=17 which is 11 in hexadecimal.
If we use the representation described earlier, then:
a(2) = 3 is [1, 1]_2,
a(3) = 13 is [1, 1, 1]_3,
a(4) = 5 is [1, 1]_4,
a(11) = 199 is [1, 7, 1]_11,
a(13) = 313 is [1, 11, 1]_13,
a(16) = 17 is [1, 1]_16,
a(48) = 2593 is [1, 6, 1]_48.
MATHEMATICA
Array[Block[{p = Prime[PrimePi[#] + 1]}, While[! PalindromeQ@ IntegerDigits[p, #], p = NextPrime@ p]; p] &, 55, 2] (* Michael De Vlieger, Feb 25 2020 *)
CROSSREFS
A331806 is a similar sequence where repeated terms are allowed.
Cf. A006093 (prime(n) - 1).
Sequence in context: A125571 A187023 A331806 * A084738 A352256 A073580
KEYWORD
nonn,base,easy
AUTHOR
Colin M Ready, Feb 22 2020
STATUS
approved