login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186376 a(n) is the sum of the squares of the coefficients of (x + 2*y + 3*z)^n. 3
1, 14, 294, 7292, 198310, 5717124, 171485916, 5290989816, 166688596998, 5335746337460, 172951272017524, 5662840724506056, 186960502253087836, 6215612039963043368, 207865952390729881080, 6987002286567227550192 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) equals the least sum of the squares of the coefficients in (1 + 2*x^k + 3*x^p)^n found at sufficiently large p for some fixed k>0.

Equivalently, a(n) equals the sum of the squares of the coefficients in any one of the following polynomials:

. (1 + 3*x^k + 2*x^p)^n, or

. (2 + x^k + 3*x^p)^n, or

. (3 + 2*x^k + x^p)^n, etc.,

for all p>(n+1)k and fixed k>0.

a(n) is the sum of the squares of the coefficients of (x + 2*y + 3*z)^n. - Michael Somos, Aug 25 2018

LINKS

Table of n, a(n) for n=0..15.

FORMULA

(1) a(n) = Sum_{k=0..n} C(n,k)^2 *Sum_{j=0..k} C(k,j)^2*4^(k-j)*9^j.

Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then

(2) A(x) = B(x) * B(2^2*x) * B(3^2*x)

where B(x) = Sum_{n>=0} x^n/n!^2 = BesselI(0, 2*sqrt(x)).

Recurrence: n^2*(4*n - 7)*a(n) = 14*(16*n^3 - 44*n^2 + 34*n - 9)*a(n-1) - 196*(2*n - 3)^2*(4*n - 3)*a(n-2) + 144*(4*n - 9)*(4*n - 7)*(4*n - 3)*a(n-3). - Vaclav Kotesovec, Feb 12 2015

a(n) ~ 2^(2*n-1) * 3^(2*n+1) / (Pi*n). - Vaclav Kotesovec, Feb 12 2015

EXAMPLE

G.f.: A(x) = 1 + 14*x + 294*x^2/2!^2 + 7292*x^3/3!^2 +...

The g.f. may be expressed as:

[Sum_{n>=0}x^n/n!^2]*[Sum_{n>=0}(4x)^n/n!^2]*[Sum_{n>=0}(9x)^n/n!^2].

MATHEMATICA

Table[Sum[Binomial[n, k]^2 * Sum[Binomial[k, j]^2 * 4^(k-j) * 9^j, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 11 2015 *)

a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[(x + y + 2 z)^n] /. {t_Integer -> t^2, x -> 1, y -> 2, z -> 3}]]; (* Michael Somos, Aug 25 2018 *)

PROG

(PARI) {a(n)=local(V=Vec((1+2*x+3*x^(n+2))^n)); V*V~}

(PARI) {a(n)=sum(k=0, n, binomial(n, k)^2*sum(j=0, k, binomial(k, j)^2*4^(k-j)*9^j))}

(PARI) {a(n)=n!^2*polcoeff(sum(m=0, n, x^m/m!^2)*sum(m=0, n, (2^2*x)^m/m!^2)*sum(m=0, n, (3^2*x)^m/m!^2), n)}

CROSSREFS

Cf. A186375, A186377, A186378, A186391.

Sequence in context: A262740 A158475 A116165 * A034834 A276699 A258491

Adjacent sequences:  A186373 A186374 A186375 * A186377 A186378 A186379

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 19 2011

EXTENSIONS

Name changed to match the definition given by Michael Somos. - Paul D. Hanna, Sep 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 08:55 EDT 2021. Contains 346445 sequences. (Running on oeis4.)