login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116165
a(n) = 7^n * n*(n+1).
1
0, 14, 294, 4116, 48020, 504210, 4941258, 46118408, 415065672, 3631824630, 31072277390, 261007130076, 2159240803356, 17633799894074, 142426845298290, 1139414762386320, 9039357114931472, 71184937280085342, 556917450485373558
OFFSET
0,2
FORMULA
G.f.: 14*x/(1-7*x)^3. - Vincenzo Librandi, Feb 28 2013
a(n) = 21*a(n-1) - 147*a(n-2) + 343*a(n-3). - Vincenzo Librandi, Feb 28 2013
a(n+1) = 14*A027474(n+2). - Bruno Berselli, Feb 28 2013
E.g.f.: 7*x*(2 + 7*x)*exp(7*x). - G. C. Greubel, May 11 2019
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = 1 - 6*log(7/6).
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(8/7) - 1. (End)
MATHEMATICA
Table[(n^2 + n) 7^n, {n, 0, 30}] (* Vincenzo Librandi, Feb 28 2013 *)
PROG
(Magma) [(n^2+n)*7^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
(Magma) I:=[0, 14, 294]; [n le 3 select I[n] else 21*Self(n-1)-147*Self(n-2)+343*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
(PARI) a(n)=(n^2+n)*7^n \\ Charles R Greathouse IV, Feb 28 2013
(Sage) [7^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 11 2019
(GAP) List([0..30], n-> 7^n*n*(n+1)); # G. C. Greubel, May 11 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Apr 08 2007
STATUS
approved