OFFSET
0,6
COMMENTS
A fixed block of a permutation p is a maximal sequence of consecutive fixed points of p. For example, the permutation 213486759 has 3 fixed blocks: 34, 67, and 9. A fixed block f of a permutation p is said to be strong if all the entries to the left (right) of f are smaller (larger) than all the entries of f. In the above example, only 34 and 9 are strong fixed blocks.
Apparently, row n has 1+ceiling(n/3) entries.
Sum of entries in row n is n!.
T(n,0) = A052186(n).
Sum_{k>=0} k*T(n,k) = A186374(n).
Entries obtained by direct counting (via Maple).
In general, column k > 1 is asymptotic to (k-1) * n! / n^(3*k-4). - Vaclav Kotesovec, Aug 29 2014
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
EXAMPLE
T(3,1) = 3 because we have [123], [1]32, and 21[3] (the strong fixed blocks are shown between square brackets).
T(7,3) = 1 because we have [1]32[4]65[7] (the strong fixed blocks are shown between square brackets).
Triangle starts:
1;
0, 1;
1, 1;
3, 3;
14, 9, 1;
77, 38, 5;
497, 198, 25;
3676, 1229, 134, 1;
30677, 8819, 815, 9;
285335, 71825, 5657, 63;
2928846, 654985, 44549, 419, 1;
MAPLE
b:= proc(n) b(n):=-`if`(n<0, 1, add(b(n-i-1)*i!, i=0..n)) end:
f:= proc(n) f(n):=`if`(n<=0, 0, b(n-1)+f(n-1)) end:
B:= proc(n, k) option remember; `if`(k=0, 0, `if`(k=1, f(n),
add((f(n-i)-1)*B(i, k-1), i=3*k-5..n-3)))
end:
T:= proc(n, k) option remember; `if`(k=0, b(n),
add(b(n-i)*B(i, k), i=3*k-2..n))
end:
seq(seq(T(n, k), k=0..ceil(n/3)), n=0..20); # Alois P. Heinz, May 23 2013
MATHEMATICA
b[n_] := b[n] = -If[n<0, 1, Sum[b[n-i-1]*i!, {i, 0, n}]]; f[n_] := f[n] = If[n <= 0, 0, b[n-1] + f[n-1]]; B[n_, k_] := B[n, k] = If[k == 0, 0, If[k == 1, f[n], Sum[(f[n-i]-1)*B[i, k-1], {i, 3*k-5, n-3}]]]; T[n_, k_] := T[n, k] = If[k == 0, b[n], Sum[b[n-i]*B[i, k], {i, 3*k-2, n}]]; Table[Table[T[n, k], {k, 0, Ceiling[ n/3]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 20 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Apr 18 2011
EXTENSIONS
Rows n=11-13 (16 terms) from Alois P. Heinz, May 22 2013
STATUS
approved