The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186269 a(n)=Product{k=0..n-1, A084057(k+1)}. 3
 1, 1, 6, 96, 5376, 946176, 544997376, 1011515129856, 6085275021213696, 118395110812733669376, 7456050498542715562622976, 1519364146391040406489059557376, 1001953802522449942301649259468947456, 2138185445843748536070796346094885374263296, 14766000790292725890315725371457440731168428261376 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), 2^j*F(j+1), 2^i*F(i+1)))_{0<=i,j<=n}. LINKS FORMULA a(n)=Product{k=0..n, (1+sqrt(5))^k/2+(1-sqrt(5))^k/2}=Product{k=0..n, sum{j=0..floor(k/2), binomial(n,2k)*5^k}}. a(n) ~ c * (1+sqrt(5))^(n*(n+1)/2) / 2^(n+1), where c = A218490 = 1.3578784076121057013874397... is the Lucas factorial constant. - Vaclav Kotesovec, Jul 11 2015 EXAMPLE a(2)=6 since det[1, 1, 1; 1, 2, 2; 1, 2, 8]=6. MATHEMATICA Table[FullSimplify[Product[(1+Sqrt[5])^k/2 + (1-Sqrt[5])^k/2, {k, 0, n}]], {n, 0, 15}] (* Vaclav Kotesovec, Jul 11 2015 *) Table[Product[LucasL[k]*2^(k-1), {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 11 2015 *) CROSSREFS Cf. A000032, A070825, A135407, A218490. Sequence in context: A251576 A126151 A066319 * A111826 A213797 A285025 Adjacent sequences:  A186266 A186267 A186268 * A186270 A186271 A186272 KEYWORD nonn,easy AUTHOR Paul Barry, Feb 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 09:21 EDT 2021. Contains 343125 sequences. (Running on oeis4.)