login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186269
a(n) = Product_{k=0..n-1} A084057(k+1).
3
1, 1, 6, 96, 5376, 946176, 544997376, 1011515129856, 6085275021213696, 118395110812733669376, 7456050498542715562622976, 1519364146391040406489059557376, 1001953802522449942301649259468947456, 2138185445843748536070796346094885374263296, 14766000790292725890315725371457440731168428261376
OFFSET
0,3
COMMENTS
a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), 2^j*F(j+1), 2^i*F(i+1)))_{0<=i,j<=n}.
FORMULA
a(n) = Product_{k=0..n} (1+sqrt(5))^k/2+(1-sqrt(5))^k/2.
a(n) = Product_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n,2k)*5^k}.
a(n) ~ c * (1+sqrt(5))^(n*(n+1)/2) / 2^(n+1), where c = A218490 = 1.3578784076121057013874397... is the Lucas factorial constant. - Vaclav Kotesovec, Jul 11 2015
EXAMPLE
a(2)=6 since det[1, 1, 1; 1, 2, 2; 1, 2, 8]=6.
MATHEMATICA
Table[FullSimplify[Product[(1+Sqrt[5])^k/2 + (1-Sqrt[5])^k/2, {k, 0, n}]], {n, 0, 15}] (* Vaclav Kotesovec, Jul 11 2015 *)
Table[Product[LucasL[k]*2^(k-1), {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 11 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 16 2011
STATUS
approved