login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k=0..n-1} A084057(k+1).
3

%I #17 Oct 18 2024 23:23:23

%S 1,1,6,96,5376,946176,544997376,1011515129856,6085275021213696,

%T 118395110812733669376,7456050498542715562622976,

%U 1519364146391040406489059557376,1001953802522449942301649259468947456,2138185445843748536070796346094885374263296,14766000790292725890315725371457440731168428261376

%N a(n) = Product_{k=0..n-1} A084057(k+1).

%C a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), 2^j*F(j+1), 2^i*F(i+1)))_{0<=i,j<=n}.

%F a(n) = Product_{k=0..n} (1+sqrt(5))^k/2+(1-sqrt(5))^k/2.

%F a(n) = Product_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n,2k)*5^k}.

%F a(n) ~ c * (1+sqrt(5))^(n*(n+1)/2) / 2^(n+1), where c = A218490 = 1.3578784076121057013874397... is the Lucas factorial constant. - _Vaclav Kotesovec_, Jul 11 2015

%e a(2)=6 since det[1, 1, 1; 1, 2, 2; 1, 2, 8]=6.

%t Table[FullSimplify[Product[(1+Sqrt[5])^k/2 + (1-Sqrt[5])^k/2,{k,0,n}]],{n,0,15}] (* _Vaclav Kotesovec_, Jul 11 2015 *)

%t Table[Product[LucasL[k]*2^(k-1),{k,0,n}],{n,0,15}] (* _Vaclav Kotesovec_, Jul 11 2015 *)

%Y Cf. A000032, A070825, A135407, A218490.

%K nonn,easy

%O 0,3

%A _Paul Barry_, Feb 16 2011