login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186270
a(n)=Product{k=0..n, A003665(k)}.
0
1, 1, 10, 280, 38080, 18887680, 39286374400, 319319651123200, 10504339243348787200, 1374135642457914946355200, 721146385161913763847208960000, 1511615130036671973985522422906880000, 12683442560532981918553467630898150113280000, 425533759542581882449393472981756918078982062080000
OFFSET
0,3
COMMENTS
a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), 2^j*J(j+1),
2^i*J(i+1)))_{0<=i,j<=n}, where J(n)=A001045(n).
FORMULA
a(n)=Product{k=0..n, 4^k/2+(-2)^k/2}=Product{k=0..n, sum{j=0..floor(k/2), binomial(n,2k)*9^k}}.
a(n) ~ c * 2^(n^2 - 1), where c = 2*QPochhammer(1/2, -1/2) = 1.1373978925308570119099534741488893085817049027787180586386880920367... . - Vaclav Kotesovec, Jul 11 2015, updated Mar 18 2024
EXAMPLE
a(3)=280 since det[1, 1, 1, 1; 1, 2, 2, 2; 1, 2, 12, 12; 1, 2, 12, 40]=280.
MATHEMATICA
Table[Product[4^k/2+(-2)^k/2, {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 11 2015 *)
CROSSREFS
Cf. A186269.
Sequence in context: A165457 A025035 A012243 * A231793 A213403 A077281
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 16 2011
STATUS
approved