login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185967
Inverse of Riordan array ((1-x)(1-x^2)(1-x^3)/(1-x^6), x(1-x)(1-x^2)(1-x^3)/(1-x^6)).
1
1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 37, 26, 12, 4, 1, 146, 103, 49, 18, 5, 1, 602, 426, 207, 80, 25, 6, 1, 2563, 1818, 897, 359, 120, 33, 7, 1, 11181, 7946, 3966, 1628, 570, 170, 42, 8, 1, 49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1, 224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
OFFSET
0,4
COMMENTS
Riordan array (g(x),xg(x)) where x*g(x) = (x+2)/3 - 2*sqrt(1+x+x^2) * cos(arccos(-(2x^3+3x^2+24x-2) / (2(1+x+x^2)^(3/2)))/3)/3.
LINKS
Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
JiSun Huh, Sangwook Kim, Seunghyun Seo, and Heesung Shin, Bijections on pattern avoiding inversion sequences and related objects, arXiv:2404.04091 [math.CO], 2024. See p. 22.
FORMULA
T(n, k) = (k + 1)/(n + 1)*Sum_{i=0..n-k} C(n+1, i)*C(n-k+i-1, n-k-i). - Vladimir Kruchinin, Apr 02 2019
T(n, k) = (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4) for k < n. - Peter Luschny, Apr 02 2019
EXAMPLE
Triangle begins
1,
1, 1,
3, 2, 1,
10, 7, 3, 1,
37, 26, 12, 4, 1,
146, 103, 49, 18, 5, 1,
602, 426, 207, 80, 25, 6, 1,
2563, 1818, 897, 359, 120, 33, 7, 1,
11181, 7946, 3966, 1628, 570, 170, 42, 8, 1,
49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1,
224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Production matrix is
1, 1,
2, 1, 1,
3, 2, 1, 1,
4, 3, 2, 1, 1,
5, 4, 3, 2, 1, 1,
6, 5, 4, 3, 2, 1, 1,
7, 6, 5, 4, 3, 2, 1, 1,
8, 7, 6, 5, 4, 3, 2, 1, 1,
9, 8, 7, 6, 5, 4, 3, 2, 1, 1
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1
MAPLE
T := (n, k) -> `if`(n=k, 1, (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4)):
seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Apr 02 2019
MATHEMATICA
T[n_, k_] := (k+1)/(n+1) Sum[Binomial[n+1, i] Binomial[n-k+i-1, n-k-i], {i, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 25 2019, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, k):=(k+1)/(n+1)*sum(binomial(n+1, i)*binomial(n-k+i-1, n-k-i), i, 0, n-k); /* Vladimir Kruchinin, Apr 02 2019 */
CROSSREFS
Inverse of number triangle A185962.
First column is A109081. Row sums are A106228(n+1).
Sequence in context: A100100 A248036 A307214 * A188111 A102472 A267629
KEYWORD
nonn,easy,tabl
AUTHOR
Paul Barry, Feb 07 2011
STATUS
approved