OFFSET
0,4
COMMENTS
Riordan array (g(x),xg(x)) where x*g(x) = (x+2)/3 - 2*sqrt(1+x+x^2) * cos(arccos(-(2x^3+3x^2+24x-2) / (2(1+x+x^2)^(3/2)))/3)/3.
LINKS
Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
JiSun Huh, Sangwook Kim, Seunghyun Seo, and Heesung Shin, Bijections on pattern avoiding inversion sequences and related objects, arXiv:2404.04091 [math.CO], 2024. See p. 22.
FORMULA
T(n, k) = (k + 1)/(n + 1)*Sum_{i=0..n-k} C(n+1, i)*C(n-k+i-1, n-k-i). - Vladimir Kruchinin, Apr 02 2019
T(n, k) = (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4) for k < n. - Peter Luschny, Apr 02 2019
EXAMPLE
Triangle begins
1,
1, 1,
3, 2, 1,
10, 7, 3, 1,
37, 26, 12, 4, 1,
146, 103, 49, 18, 5, 1,
602, 426, 207, 80, 25, 6, 1,
2563, 1818, 897, 359, 120, 33, 7, 1,
11181, 7946, 3966, 1628, 570, 170, 42, 8, 1,
49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1,
224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1
Production matrix is
1, 1,
2, 1, 1,
3, 2, 1, 1,
4, 3, 2, 1, 1,
5, 4, 3, 2, 1, 1,
6, 5, 4, 3, 2, 1, 1,
7, 6, 5, 4, 3, 2, 1, 1,
8, 7, 6, 5, 4, 3, 2, 1, 1,
9, 8, 7, 6, 5, 4, 3, 2, 1, 1
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1
MAPLE
T := (n, k) -> `if`(n=k, 1, (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4)):
seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Apr 02 2019
MATHEMATICA
T[n_, k_] := (k+1)/(n+1) Sum[Binomial[n+1, i] Binomial[n-k+i-1, n-k-i], {i, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 25 2019, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, k):=(k+1)/(n+1)*sum(binomial(n+1, i)*binomial(n-k+i-1, n-k-i), i, 0, n-k); /* Vladimir Kruchinin, Apr 02 2019 */
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Feb 07 2011
STATUS
approved