login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185966
Series reversion of A028310.
1
1, -1, 0, 2, -2, -5, 14, 5, -72, 68, 278, -726, -520, 4691, -3514, -21758, 50374, 56185, -374566, 194596, 1962618, -3956504, -6258320, 33057877, -8974630, -190822072, 330170022, 710487590, -3088268200, 18008739, 19398384974, -28292606291, -81631282280, 298546543220, 84094857302, -2028216574806, 2428288153424, 9450205225145
OFFSET
0,4
LINKS
FORMULA
a(n) = A185962(2*n,n)/(n+1) = A185965(n)/(n+1).
Given g.f. A(x) then B(x) = x * A(x) satisfies B(x) = (1 - B(x)) * (x + B(x) * (B(x) - x)). - Michael Somos, Apr 05 2012
Conjecture: 6*n*(n+1)*a(n) -n*(n-14)*a(n-1) +2*n*(14*n-19)*a(n-2) -4*(n-2)*(17*n-48)*a(n-3) +6*(2*n-5)*(n-4)*a(n-4)=0. - R. J. Mathar, Nov 15 2012
Recurrence (of order 3): 3*n*(n+1)*(19*n-27)*a(n) = -2*n*(38*n^2 - 73*n + 9)*a(n-1) - 20*(19*n^3 - 65*n^2 + 66*n - 18)*a(n-2) + 2*(n-3)*(2*n-3)*(19*n-8)*a(n-3). - Vaclav Kotesovec, Jan 22 2014
Lim sup n->infinity |a(n)|^(1/n) = sqrt(20/9 + 1/27*(272376 - 12312 * sqrt(57))^(1/3) + 2/9*(1261 + 57 * sqrt(57))^(1/3)) = 2.637962913244886521522... - Vaclav Kotesovec, Jan 22 2014
EXAMPLE
1 - x + 2*x^3 - 2*x^4 - 5*x^5 + 14*x^6 + 5*x^7 - 72*x^8 + 68*x^9 + ...
MATHEMATICA
CoefficientList[1/x*InverseSeries[Series[x*(1-x+x^2) /(1-x)^2, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Jan 22 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( serreverse( x * ((1 - x + x^2) / (1 - x)^2 + x * O(x^n))) / x, n))} /* Michael Somos, Apr 05 2012 */
(PARI) {a(n) = local(B); if( n<0, 0, B = O(x); for( k=0, n, B = (1 - B) * (x + B * (B - x))); polcoeff( B / x, n))} /* Michael Somos, Apr 05 2012 */
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Barry, Feb 07 2011
STATUS
approved