login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Series reversion of A028310.
1

%I #16 Jul 24 2017 01:57:33

%S 1,-1,0,2,-2,-5,14,5,-72,68,278,-726,-520,4691,-3514,-21758,50374,

%T 56185,-374566,194596,1962618,-3956504,-6258320,33057877,-8974630,

%U -190822072,330170022,710487590,-3088268200,18008739,19398384974,-28292606291,-81631282280,298546543220,84094857302,-2028216574806,2428288153424,9450205225145

%N Series reversion of A028310.

%H G. C. Greubel, <a href="/A185966/b185966.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A185962(2*n,n)/(n+1) = A185965(n)/(n+1).

%F Given g.f. A(x) then B(x) = x * A(x) satisfies B(x) = (1 - B(x)) * (x + B(x) * (B(x) - x)). - _Michael Somos_, Apr 05 2012

%F Conjecture: 6*n*(n+1)*a(n) -n*(n-14)*a(n-1) +2*n*(14*n-19)*a(n-2) -4*(n-2)*(17*n-48)*a(n-3) +6*(2*n-5)*(n-4)*a(n-4)=0. - _R. J. Mathar_, Nov 15 2012

%F Recurrence (of order 3): 3*n*(n+1)*(19*n-27)*a(n) = -2*n*(38*n^2 - 73*n + 9)*a(n-1) - 20*(19*n^3 - 65*n^2 + 66*n - 18)*a(n-2) + 2*(n-3)*(2*n-3)*(19*n-8)*a(n-3). - _Vaclav Kotesovec_, Jan 22 2014

%F Lim sup n->infinity |a(n)|^(1/n) = sqrt(20/9 + 1/27*(272376 - 12312 * sqrt(57))^(1/3) + 2/9*(1261 + 57 * sqrt(57))^(1/3)) = 2.637962913244886521522... - _Vaclav Kotesovec_, Jan 22 2014

%e 1 - x + 2*x^3 - 2*x^4 - 5*x^5 + 14*x^6 + 5*x^7 - 72*x^8 + 68*x^9 + ...

%t CoefficientList[1/x*InverseSeries[Series[x*(1-x+x^2) /(1-x)^2, {x, 0, 20}], x],x] (* _Vaclav Kotesovec_, Jan 22 2014 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( serreverse( x * ((1 - x + x^2) / (1 - x)^2 + x * O(x^n))) / x, n))} /* _Michael Somos_, Apr 05 2012 */

%o (PARI) {a(n) = local(B); if( n<0, 0, B = O(x); for( k=0, n, B = (1 - B) * (x + B * (B - x))); polcoeff( B / x, n))} /* _Michael Somos_, Apr 05 2012 */

%Y Cf. A028130, A185962, A185965.

%K sign,easy

%O 0,4

%A _Paul Barry_, Feb 07 2011