login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307214
Triangle read by rows: number of forests of (k+1) ordered trees with 2(n-k) edges having root of even degree and nonroot nodes of outdegree 0 or 2.
0
1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 35, 26, 12, 4, 1, 126, 99, 49, 18, 5, 1, 462, 382, 201, 80, 25, 6, 1, 1716, 1486, 825, 351, 120, 33, 7, 1, 6435, 5812, 3384, 1524, 560, 170, 42, 8, 1, 24310, 22819, 13866, 6562, 2561, 840, 231, 52, 9, 1
OFFSET
0,4
FORMULA
G.f.: (2*x)/(-2*x^2*y+4*x+sqrt(1-4*x)-1).
T(n,m) = Sum_{k=1..n-m} k/(n-m) * C(2*n-2*m,n-m-k) * C(k+m,k).
EXAMPLE
1;
1, 1;
3, 2, 1;
10, 7, 3, 1;
126, 99, 49, 18, 5, 1;
Forests have 4 edges and 2 trees. T(3,1)=7.
|...........|.....x.x.|....x.x...|
|....x.x.x.x|....x.o..|.....o.x..|
|.r.....r...|.r...r...|.r....r...|
.................................
|.x.x..x.x.|
| .r....r..|
''''''''''''''''''''''''''''''''''
|...........|..x.x....|.x.x......|
|.x.x.x.x...|.x.o.....|..o.x.....|
|....r....r.|..r....r.|...r....r.|
PROG
(Maxima) T(n, m):=if n=m then 1 else sum(k/(n-m)*binomial(2*n-2*m, n-m-k)*binomial(k+m, k), k, 1, n-m);
CROSSREFS
Cf. A088218.
Sequence in context: A267019 A100100 A248036 * A185967 A188111 A102472
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Mar 28 2019
STATUS
approved