login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse of Riordan array ((1-x)(1-x^2)(1-x^3)/(1-x^6), x(1-x)(1-x^2)(1-x^3)/(1-x^6)).
1

%I #24 Apr 11 2024 10:50:11

%S 1,1,1,3,2,1,10,7,3,1,37,26,12,4,1,146,103,49,18,5,1,602,426,207,80,

%T 25,6,1,2563,1818,897,359,120,33,7,1,11181,7946,3966,1628,570,170,42,

%U 8,1,49720,35389,17823,7458,2701,852,231,52,9,1,224540,160024,81177,34484,12815,4212,1218,304,63,10,1

%N Inverse of Riordan array ((1-x)(1-x^2)(1-x^3)/(1-x^6), x(1-x)(1-x^2)(1-x^3)/(1-x^6)).

%C Riordan array (g(x),xg(x)) where x*g(x) = (x+2)/3 - 2*sqrt(1+x+x^2) * cos(arccos(-(2x^3+3x^2+24x-2) / (2(1+x+x^2)^(3/2)))/3)/3.

%H Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, <a href="https://doi.org/10.1016/j.aam.2004.05.002">Production Matrices</a>, Advances in Mathematics, 34 (2005) pp. 101-122.

%H JiSun Huh, Sangwook Kim, Seunghyun Seo, and Heesung Shin, <a href="https://arxiv.org/abs/2404.04091">Bijections on pattern avoiding inversion sequences and related objects</a>, arXiv:2404.04091 [math.CO], 2024. See p. 22.

%F T(n, k) = (k + 1)/(n + 1)*Sum_{i=0..n-k} C(n+1, i)*C(n-k+i-1, n-k-i). - _Vladimir Kruchinin_, Apr 02 2019

%F T(n, k) = (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4) for k < n. - _Peter Luschny_, Apr 02 2019

%e Triangle begins

%e 1,

%e 1, 1,

%e 3, 2, 1,

%e 10, 7, 3, 1,

%e 37, 26, 12, 4, 1,

%e 146, 103, 49, 18, 5, 1,

%e 602, 426, 207, 80, 25, 6, 1,

%e 2563, 1818, 897, 359, 120, 33, 7, 1,

%e 11181, 7946, 3966, 1628, 570, 170, 42, 8, 1,

%e 49720, 35389, 17823, 7458, 2701, 852, 231, 52, 9, 1,

%e 224540, 160024, 81177, 34484, 12815, 4212, 1218, 304, 63, 10, 1

%e Production matrix is

%e 1, 1,

%e 2, 1, 1,

%e 3, 2, 1, 1,

%e 4, 3, 2, 1, 1,

%e 5, 4, 3, 2, 1, 1,

%e 6, 5, 4, 3, 2, 1, 1,

%e 7, 6, 5, 4, 3, 2, 1, 1,

%e 8, 7, 6, 5, 4, 3, 2, 1, 1,

%e 9, 8, 7, 6, 5, 4, 3, 2, 1, 1

%e 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1

%p T := (n, k) -> `if`(n=k, 1, (1 + k)*(n - k)*hypergeom([1 + k - n, -n, 1 - k + n], [3/2, 2], 1/4)):

%p seq(seq(simplify(T(n, k)), k=0..n),n=0..10); # _Peter Luschny_, Apr 02 2019

%t T[n_, k_] := (k+1)/(n+1) Sum[Binomial[n+1, i] Binomial[n-k+i-1, n-k-i], {i, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 25 2019, after _Vladimir Kruchinin_ *)

%o (Maxima)

%o T(n,k):=(k+1)/(n+1)*sum(binomial(n+1,i)*binomial(n-k+i-1,n-k-i),i,0,n-k); /* _Vladimir Kruchinin_, Apr 02 2019 */

%Y Inverse of number triangle A185962.

%Y First column is A109081. Row sums are A106228(n+1).

%K nonn,easy,tabl

%O 0,4

%A _Paul Barry_, Feb 07 2011