login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185876
Fourth accumulation array of A051340, by antidiagonals.
5
1, 5, 6, 15, 29, 21, 35, 85, 99, 56, 70, 195, 285, 259, 126, 126, 385, 645, 735, 574, 252, 210, 686, 1260, 1645, 1610, 1134, 462, 330, 1134, 2226, 3185, 3570, 3150, 2058, 792, 495, 1770, 3654, 5586, 6860, 6930, 5670, 3498, 1287, 715, 2640, 5670, 9114, 11956, 13230, 12390, 9570, 5643, 2002, 1001, 3795, 8415, 14070
OFFSET
1,2
COMMENTS
A member of the accumulation chain A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)
LINKS
FORMULA
T(n,k) = (4*n+5*k+11)*C(k+2,3)*C(n+4,4)/20, k>=1, n>=1.
EXAMPLE
Northwest corner:
1, 5, 15, 35, 70
6, 29, 85, 195, 385
21, 99, 285, 645, 1260
56, 259, 735, 1645, 3185
MATHEMATICA
f[n_, k_]:=k(1+k)n(1+n)(2+n)(5+4k+3n)/144;
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]] (* A185875 *)
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
s[n_, k_]:=Sum[f[i, j], {i, 1, n}, {j, 1, k}]; (* accumulation array of {f(n, k)} *)
Factor[s[n, k]] (* formula for A185876 *)
TableForm[Table[s[n, k], {n, 1, 10}, {k, 1, 15}]] (* A185876 *)
Table[s[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
CROSSREFS
Row 1: A000332, column 1: A000389.
Sequence in context: A115908 A247962 A241307 * A356496 A091020 A019070
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 05 2011
STATUS
approved