Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 20 2017 02:19:19
%S 1,5,6,15,29,21,35,85,99,56,70,195,285,259,126,126,385,645,735,574,
%T 252,210,686,1260,1645,1610,1134,462,330,1134,2226,3185,3570,3150,
%U 2058,792,495,1770,3654,5586,6860,6930,5670,3498,1287,715,2640,5670,9114,11956,13230,12390,9570,5643,2002,1001,3795,8415,14070
%N Fourth accumulation array of A051340, by antidiagonals.
%C A member of the accumulation chain A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)
%H G. C. Greubel, <a href="/A185876/b185876.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H Johann Cigler, <a href="https://arxiv.org/abs/1611.05252">Some elementary observations on Narayana polynomials and related topics</a>, arXiv:1611.05252 [math.CO], 2016. See p. 24.
%F T(n,k) = (4*n+5*k+11)*C(k+2,3)*C(n+4,4)/20, k>=1, n>=1.
%e Northwest corner:
%e 1, 5, 15, 35, 70
%e 6, 29, 85, 195, 385
%e 21, 99, 285, 645, 1260
%e 56, 259, 735, 1645, 3185
%t f[n_,k_]:=k(1+k)n(1+n)(2+n)(5+4k+3n)/144;
%t TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185875 *)
%t Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
%t s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
%t Factor[s[n,k]] (* formula for A185876 *)
%t TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185876 *)
%t Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
%Y Cf. A051340, A141419, A144112, A185874, A185875.
%Y Row 1: A000332, column 1: A000389.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Feb 05 2011