login
A185875
Third accumulation array of A051340, by antidiagonals.
5
1, 4, 5, 10, 19, 15, 20, 46, 55, 35, 35, 90, 130, 125, 70, 56, 155, 250, 290, 245, 126, 84, 245, 425, 550, 560, 434, 210, 120, 364, 665, 925, 1050, 980, 714, 330, 165, 516, 980, 1435, 1750, 1820, 1596, 1110, 495, 220, 705, 1380, 2100, 2695, 3010, 2940, 2460, 1650, 715, 286, 935, 1875, 2940, 3920, 4606, 4830, 4500, 3630, 2365, 1001, 364, 1210, 2475, 3975, 5460, 6664, 7350, 7350, 6600, 5170
OFFSET
1,2
COMMENTS
A member of the accumulation chain A051340 < A141419 < A185874 < A185875 < A185876 < ... (See A144112 for the definition of accumulation array.)
LINKS
FORMULA
T(n,k) = (3*n+4*k+5)*C(k,2)*C(n,3)/12, k>=1, n>=1.
EXAMPLE
Northwest corner:
1, 4, 10, 20, 35
5, 19, 46, 90, 155
15, 55, 130, 250, 425
35, 125, 290, 550, 925
MATHEMATICA
f[n_, k_]:= k*(1+k)*n*(1+n)*(2+n)*(5+4*k+3*n)/144;
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
CROSSREFS
Row 1: A000292; Column 1: A000332.
Sequence in context: A049897 A049867 A054173 * A354080 A049898 A166577
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 05 2011
STATUS
approved