login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354080
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0)=1, a(1)=4, a(2)=5.
1
1, 4, 5, 10, 19, 34, 63, 116, 213, 392, 721, 1326, 2439, 4486, 8251, 15176, 27913, 51340, 94429, 173682, 319451, 587562, 1080695, 1987708, 3655965, 6724368, 12368041, 22748374, 41840783, 76957198, 141546355
OFFSET
0,2
COMMENTS
a(n) is the number of ways to tile this T-shaped figure of length n with squares, dominoes, and trominoes. Shown here is the figure for n=9.
_
|_|_______________
|_|_|_|_|_|_|_|_|_|
|_|
FORMULA
a(n) = T(n+2) + 3*T(n+1), for T(n) = A000073(n) the tribonacci numbers.
a(n) = L(n+1) + F(n) + Sum_{i=1.. n-2} F(i)*a(n-2-i), for F(n) = A000045(n) the Fibonacci numbers and L(n) = A000032(n) the Lucas numbers.
a(n) = L(n+1) + T(n+1) + Sum_{i=1.. n-2} L(i)*T(n-i), for L(n) = A000032(n) the Lucas numbers and T(n) = A000073(n) the tribonacci numbers.
G.f.: (1 + 3*x)/(1 - x - x^2 - x^3). - Stefano Spezia, Jul 14 2022
EXAMPLE
Here is one of the a(9)=392 tilings, this one with four squares, two dominoes, and one tromino.
_
|_|_______________
| |_|_____|_|_|___|
|_|
MATHEMATICA
LinearRecurrence[{1, 1, 1}, {1, 4, 5}, 50] (* Paolo Xausa, May 27 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Greg Dresden and Veda Garigipati, Jul 13 2022
STATUS
approved