OFFSET
0,3
COMMENTS
Let E(t) = sec(t)+tan(t) denote the generating function for the zigzag numbers A000111. The zigzag Bernoulli numbers, denoted ZB(n), are defined by means of the generating function log E(t)/(E(t)-1) = Sum_{n>=0} ZB(n)*t^n/n!. See formula (1).
The present sequence lists the numerators of ZB(2*n) for n>=0.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..235
FORMULA
(1)... 1/2*log(sec(t)+tan(t))*(1+sin(t)+cos(t))/(1+sin(t)-cos(t))
= Sum_{n >= 0} ZB(2*n)*t^(2*n)/(2*n)!
= 1 + (1/6)*t^2/2! + (19/30)*t^4/4! + (253/42)*t^6/6! + ....
(2)... ZB(2*n) = (-1)^n*Sum_{k = 0..n} binomial(2*n,2*k)/(2*k+1)* Bernoulli(2*n-2*k)*Euler(2*k).
(3)... a(n) = numerator(ZB(2*n)).
MAPLE
a := n - > (-1)^n*add (binomial(2*n, 2*k)/(2*k+1)* bernoulli(2*n-2*k)*
euler(2*k), k = 0..n):
seq(numer(a(n)), n = 0..20);
MATHEMATICA
Numerator[Table[(-1)^n*Sum[Binomial[2*n, 2*k]*BernoulliB[2*(n - k)]* EulerE[2*k]/(2*k + 1), {k, 0, n}], {n, 0, 50}]] (* G. C. Greubel, Jul 06 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Feb 18 2011
STATUS
approved