login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185289 In a bipartite graph with 2n vertices (|V_1|=|V_2|=n), this sequence gives the number of ways to create n edges, one for each vertex of V_1, and to rank the vertices of V_2 which have incident edges. 1
1, 1, 6, 75, 1612, 52805, 2442666, 151382959, 12093970008, 1209295535049, 147859385866390, 21692929137930611, 3759744512444581860, 759740612270504941453, 177000400360669503651138, 47085371754008630756331255, 14182051733113750632290151856 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is the number of ways to choose a function f:(1,2,...,n}->{1,2,...,n} and then linearly order the blocks of the coimage of f. - Geoffrey Critzer, Dec 23 2011

REFERENCES

Paolo Hägler, Il problema dei pasti, Bollettino dei docenti di matematica, 63 (2011), 101-108

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

FORMULA

a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(k-j)*j^n*n!/(n-k)!*k!/(j!*(k-j)!). Paolo Hägler, Feb 20 2011

a(n) = Sum_{k=0..n} C(n,k)*Stirling2(n,k)*k!^2.

a(n) = Sum_{k=0..n} A090657(n,k)*k!.

EXAMPLE

For n=2 the a(2)=6 solutions are Aab, Bab, AaBb, AbBa, BbAa, BaAb. The capital letters are the vertices of V_2, in order, and the lower-case letters are the vertices of V_1 joined to the vertex of V_2 represented by the capital letter.

MAPLE

f:= n-> add(add((-1)^(i-j)*j^n*n!*i!/(j!*(i-j)!*(n-i)!), j=0..i), i=0..n);

[seq(f(n), n=0..20)]; # N. J. A. Sloane, Mar 08 2011

MATHEMATICA

Table[Sum[Binomial[n, k] StirlingS2[n, k] k!^2, {k, 0, n}], {n, 0, 20}]  (* Geoffrey Critzer, Dec 23 2011 *)

PROG

(PARI) a(n) = sum(k=0, n, binomial(n, k)*stirling(n, k, 2)*k!^2); \\ Michel Marcus, Mar 23 2016

CROSSREFS

Sequence in context: A216136 A126462 A081066 * A336228 A326011 A263228

Adjacent sequences:  A185286 A185287 A185288 * A185290 A185291 A185292

KEYWORD

nonn

AUTHOR

Paolo Hägler, Feb 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)