login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185289
In a bipartite graph with 2n vertices (|V_1|=|V_2|=n), this sequence gives the number of ways to create n edges, one for each vertex of V_1, and to rank the vertices of V_2 which have incident edges.
1
1, 1, 6, 75, 1612, 52805, 2442666, 151382959, 12093970008, 1209295535049, 147859385866390, 21692929137930611, 3759744512444581860, 759740612270504941453, 177000400360669503651138, 47085371754008630756331255, 14182051733113750632290151856
OFFSET
0,3
COMMENTS
a(n) is the number of ways to choose a function f:{1,2,...,n}->{1,2,...,n} and then linearly order the blocks of the coimage of f. - Geoffrey Critzer, Dec 23 2011
REFERENCES
Paolo Hägler, Il problema dei pasti, Bollettino dei docenti di matematica, 63 (2011), 101-108
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(k-j)*j^n*n!/(n-k)!*k!/(j!*(k-j)!). Paolo Hägler, Feb 20 2011
a(n) = Sum_{k=0..n} C(n,k)*Stirling2(n,k)*k!^2.
a(n) = Sum_{k=0..n} A090657(n,k)*k!.
EXAMPLE
For n=2 the a(2)=6 solutions are Aab, Bab, AaBb, AbBa, BbAa, BaAb. The capital letters are the vertices of V_2, in order, and the lower-case letters are the vertices of V_1 joined to the vertex of V_2 represented by the capital letter.
MAPLE
f:= n-> add(add((-1)^(i-j)*j^n*n!*i!/(j!*(i-j)!*(n-i)!), j=0..i), i=0..n);
[seq(f(n), n=0..20)]; # N. J. A. Sloane, Mar 08 2011
MATHEMATICA
Table[Sum[Binomial[n, k] StirlingS2[n, k] k!^2, {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Dec 23 2011 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)*stirling(n, k, 2)*k!^2); \\ Michel Marcus, Mar 23 2016
CROSSREFS
Sequence in context: A360471 A126462 A081066 * A336228 A326011 A350283
KEYWORD
nonn
AUTHOR
Paolo Hägler, Feb 20 2011
STATUS
approved