login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185287
R(m,n) is the number of ways to split two strings x and y of length m and n, respectively, into the same number of nonempty parts such that at least one of the corresponding parts has length 1 and such that the parts of the y string have at most size 2.
1
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 0, 0, 1, 4, 5, 3, 0, 0, 1, 5, 8, 7, 3, 0, 0, 1, 6, 12, 13, 7, 0, 0, 0, 1, 7, 17, 22, 16, 6, 0, 0, 0, 1, 8, 23, 35, 32, 17, 4, 0, 0, 0, 1, 9, 30, 53, 58, 39, 14, 0, 0, 0, 0, 1, 10, 38, 77, 98, 80, 40, 10, 0, 0
OFFSET
1,8
FORMULA
R(m,n) = C(m-1,n-1) + Sum_{k=2..n-1} C(m+k-n-1,2*k-n-1)*C(k,2*k-n).
EXAMPLE
1 0 0 0 0 0 0 0 0 0 0 0
1 1 2 0 0 0 0 0 0 0 0 0
1 2 3 3 3 0 0 0 0 0 0 0
1 3 5 7 7 6 4 0 0 0 0 0
1 4 8 13 16 17 14 10 5 0 0 0
1 5 12 22 32 39 40 35 25 15 6 0
1 6 17 35 58 80 95 97 86 65 41 21
1 7 23 53 98 151 201 233 238 213 167 112
1 8 30 77 157 267 392 505 577 587 532 427
1 9 38 108 241 448 718 1013 1273 1436 1458 1333
1 10 47 147 357 720 1250 1912 2612 3217 3590 3640
1 11 57 195 513 1116 2086 3434 5056 6728 8146 9011
MATHEMATICA
r[m_, n_] := Binomial[m-1, n-1] + Sum[ Binomial[k, 2k-n]*Binomial[k+m-n-1, 2k-n-1], {k, 2, n-1}]; r[m_, n_] /; n > 2m-1 = 0; Flatten[ Table[ r[m-k+1, k], {m, 1, 12}, {k, 1, m}]] (* Jean-François Alcover, Nov 07 2011 *)
PROG
(PARI)
C(n, k)=if(n<k, 0, binomial(n, k));
R(m, n)=C(m-1, n-1)+sum(k=2, n-1, C(m+k-n-1, 2*k-n-1)*C(k, 2*k-n) );
for (d=1, 14, for(c=1, d, print1(R(d-c+1, c), ", ")))
/* Joerg Arndt, Mar 11 2011 */
CROSSREFS
Cf. A180091.
Sequence in context: A296339 A362686 A104245 * A276554 A297323 A257654
KEYWORD
nonn,tabl,nice
AUTHOR
Steffen Eger, Feb 20 2011
STATUS
approved