Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Oct 18 2024 20:32:04
%S 1,1,6,75,1612,52805,2442666,151382959,12093970008,1209295535049,
%T 147859385866390,21692929137930611,3759744512444581860,
%U 759740612270504941453,177000400360669503651138,47085371754008630756331255,14182051733113750632290151856
%N In a bipartite graph with 2n vertices (|V_1|=|V_2|=n), this sequence gives the number of ways to create n edges, one for each vertex of V_1, and to rank the vertices of V_2 which have incident edges.
%C a(n) is the number of ways to choose a function f:{1,2,...,n}->{1,2,...,n} and then linearly order the blocks of the coimage of f. - _Geoffrey Critzer_, Dec 23 2011
%D Paolo Hägler, Il problema dei pasti, Bollettino dei docenti di matematica, 63 (2011), 101-108
%H Alois P. Heinz, <a href="/A185289/b185289.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(k-j)*j^n*n!/(n-k)!*k!/(j!*(k-j)!). _Paolo Hägler_, Feb 20 2011
%F a(n) = Sum_{k=0..n} C(n,k)*Stirling2(n,k)*k!^2.
%F a(n) = Sum_{k=0..n} A090657(n,k)*k!.
%e For n=2 the a(2)=6 solutions are Aab, Bab, AaBb, AbBa, BbAa, BaAb. The capital letters are the vertices of V_2, in order, and the lower-case letters are the vertices of V_1 joined to the vertex of V_2 represented by the capital letter.
%p f:= n-> add(add((-1)^(i-j)*j^n*n!*i!/(j!*(i-j)!*(n-i)!),j=0..i),i=0..n);
%p [seq(f(n),n=0..20)]; # _N. J. A. Sloane_, Mar 08 2011
%t Table[Sum[Binomial[n, k] StirlingS2[n, k] k!^2, {k, 0, n}], {n, 0,20}] (* _Geoffrey Critzer_, Dec 23 2011 *)
%o (PARI) a(n) = sum(k=0, n, binomial(n,k)*stirling(n,k,2)*k!^2); \\ _Michel Marcus_, Mar 23 2016
%K nonn
%O 0,3
%A _Paolo Hägler_, Feb 20 2011